Elke Pogge von Strandmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9472547/publications.pdf

Version: 2024-02-01

38 papers 2,753 citations

331538 21 h-index 330025 37 g-index

38 all docs 38 docs citations

38 times ranked 4782 citing authors

#	Article	IF	CITATIONS
1	Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncolmmunology, 2016, 5, e1071008.	2.1	545
2	Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. Journal of Extracellular Vesicles, 2019, 8, 1596016.	5.5	318
3	Human Leukocyte Antigen-B-Associated Transcript 3 Is Released from Tumor Cells and Engages the NKp30 Receptor on Natural Killer Cells. Immunity, 2007, 27, 965-974.	6.6	284
4	Dendritic Cells Release HLA-B-Associated Transcript-3 Positive Exosomes to Regulate Natural Killer Function. PLoS ONE, 2008, 3, e3377.	1.1	207
5	The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Frontiers in Oncology, 2017, 7, 24.	1.3	187
6	Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood, 2013, 121, 3658-3665.	0.6	184
7	Metalloprotease-Mediated Tumor Cell Shedding of B7-H6, the Ligand of the Natural Killer Cell–Activating Receptor NKp30. Cancer Research, 2014, 74, 3429-3440.	0.4	169
8	Tumor–Host Cell Interactions in Ovarian Cancer: Pathways to Therapy Failure. Trends in Cancer, 2017, 3, 137-148.	3.8	85
9	Delayed development of chronic lymphocytic leukemia in the absence of macrophage migration inhibitory factor. Blood, 2013, 121, 812-821.	0.6	80
10	Cancer-derived extracellular vesicles: friend and foe of tumour immunosurveillance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160481.	1.8	68
11	Hodgkin Lymphoma-Derived Extracellular Vesicles Change the Secretome of Fibroblasts Toward a CAF Phenotype. Frontiers in Immunology, 2018, 9, 1358.	2.2	57
12	Multi-platform Affinity Proteomics Identify Proteins Linked to Metastasis and Immune Suppression in Ovarian Cancer Plasma. Frontiers in Oncology, 2019, 9, 1150.	1.3	47
13	RIG-I activation induces the release of extracellular vesicles with antitumor activity. Oncolmmunology, 2016, 5, e1219827.	2.1	44
14	Exosome-dependent immune surveillance at the metastatic niche requires BAG6 and CBP/p300-dependent acetylation of p53. Theranostics, 2019, 9, 6047-6062.	4.6	43
15	CD30 on extracellular vesicles from malignant Hodgkin cells supports damaging of CD30 ligand-expressing bystander cells with Brentuximab-Vedotin, <i>in vitro</i> . Oncotarget, 2016, 7, 30523-30535.	0.8	43
16	Role of Exosomes Released by Dendritic Cells and/or by Tumor Targets: Regulation of NK Cell Plasticity. Frontiers in Immunology, 2014, 5, 91.	2.2	38
17	Dual-platform affinity proteomics identifies links between the recurrence of ovarian carcinoma and proteins released into the tumor microenvironment. Theranostics, 2019, 9, 6601-6617.	4.6	36
18	Antigen Loss Variants: Catching Hold of Escaping Foes. Frontiers in Immunology, 2017, 8, 175.	2.2	35

#	Article	IF	CITATIONS
19	The Combination of MiRNA-196b, LCN2, and TIMP1 is a Potential Set of Circulating Biomarkers for Screening Individuals at Risk for Familial Pancreatic Cancer. Journal of Clinical Medicine, 2018, 7, 295.	1.0	30
20	Soluble NKG2D ligands in the ovarian cancer microenvironment are associated with an adverse clinical outcome and decreased memory effector T cells independent of NKG2D downregulation. Oncolmmunology, 2017, 6, e1339854.	2.1	29
21	The Role of Extracellular HSP70 in the Function of Tumor-Associated Immune Cells. Cancers, 2021, 13, 4721.	1.7	27
22	Phosphoproteomics identify arachidonic-acid-regulated signal transduction pathways modulating macrophage functions with implications for ovarian cancer. Theranostics, 2021, 11, 1377-1395.	4.6	22
23	Natural ligands and antibody-based fusion proteins: harnessing the immune system against cancer. Trends in Molecular Medicine, 2014, 20, 72-82.	3.5	20
24	Mono- and dual-targeting triplebodies activate natural killer cells and have anti-tumor activityin vitroandin vivoagainst chronic lymphocytic leukemia. Oncolmmunology, 2016, 5, e1211220.	2.1	18
25	Genome-wide association study implicates immune dysfunction in the development of Hodgkin lymphoma. Blood, 2018, 132, 2040-2052.	0.6	17
26	Extracellular vesicles released from chronic lymphocytic leukemia cells exhibit a disease relevant mRNA signature and transfer mRNA to bystander cells. Haematologica, 2017, 102, e100-e103.	1.7	15
27	Kinesin-5 Blocker Monastrol Protects Against Bortezomib-Induced Peripheral Neurotoxicity. Neurotoxicity Research, 2017, 32, 555-562.	1.3	14
28	Secreted Ligands of the NK Cell Receptor NKp30: B7-H6 Is in Contrast to BAG6 Only Marginally Released via Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 2189.	1.8	14
29	IFN-Gamma and TNF-Alpha as a Priming Strategy to Enhance the Immunomodulatory Capacity of Secretomes from Menstrual Blood-Derived Stromal Cells. International Journal of Molecular Sciences, 2021, 22, 12177.	1.8	13
30	NKp30 and its ligands: emerging players in tumor immune evasion from natural killer cells. Annals of Translational Medicine, 2015, 3, 314.	0.7	12
31	The Oncoprotein SKI Acts as A Suppressor of NK Cell-Mediated Immunosurveillance in PDAC. Cancers, 2020, 12, 2857.	1.7	11
32	The Immunomodulatory Signature of Extracellular Vesicles From Cardiosphere-Derived Cells: A Proteomic and miRNA Profiling. Frontiers in Cell and Developmental Biology, 2020, 8, 321.	1.8	11
33	Shipping Drug Resistance: Extracellular Vesicles in Ovarian Cancer. Trends in Molecular Medicine, 2016, 22, 741-743.	3.5	9
34	Molecular Determinants for RNA Release into Extracellular Vesicles. Cells, 2021, 10, 2674.	1.8	8
35	DNA damage response and evasion from immunosurveillance in CLL: new options for NK cell-based immunotherapies. Frontiers in Genetics, 2015 , 6 , 11 .	1.1	6
36	Beyond the Extracellular Vesicles: Technical Hurdles, Achieved Goals and Current Challenges When Working on Adipose Cells. International Journal of Molecular Sciences, 2021, 22, 3362.	1.8	6

#	Article	IF	CITATIONS
37	The more the better – determining the optimal range when performing single-vesicle phenotyping. Trillium Extracellular Vesicles, 2021, 1, 26-33.	0.1	1
38	RNAs and extracellular vesicles - Keeping up the appearances. Trillium Extracellular Vesicles, 2021, 1, 12-15.	0.1	0