Paavo Ojanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9472259/publications.pdf Version: 2024-02-01

Ρλανό Οιανέν

#	Article	IF	CITATIONS
1	Sources and sinks of greenhouse gases in the landscape: Approach for spatially explicit estimates. Science of the Total Environment, 2021, 781, 146668.	8.0	9
2	Nitrous oxide emissions of undrained, forestry-drained, and rewetted boreal peatlands. Forest Ecology and Management, 2020, 478, 118494.	3.2	34
3	Impact of partial harvest on CH4 and N2O balances of a drained boreal peatland forest. Agricultural and Forest Meteorology, 2020, 295, 108168.	4.8	18
4	Vegetation controls of water and energy balance of a drained peatland forest: Responses to alternative harvesting practices. Agricultural and Forest Meteorology, 2020, 295, 108198.	4.8	31
5	Applying a Multi-Criteria Project Portfolio Tool in Selecting Energy Peat Production Areas. Sustainability, 2020, 12, 1705.	3.2	10
6	Rewetting Offers Rapid Climate Benefits for Tropical and Agricultural Peatlands But Not for Forestryâ€Drained Peatlands. Global Biogeochemical Cycles, 2020, 34, e2019GB006503.	4.9	23
7	Cost-effective land-use options of drained peatlands– integrated biophysical-economic modeling approach. Ecological Economics, 2020, 175, 106704.	5.7	28
8	MetsÃælouden vesistökuormitus: nykykätys ja tulevaisuuden menetelmäehitys. Metstieteen Aikakauskirja, 2020, 2020, .	0.0	2
9	Response of Soil Surface Respiration to Storm and Ips typographus (L.) Disturbance in Boreal Norway Spruce Stands. Forests, 2019, 10, 307.	2.1	7
10	Reviews and syntheses: Greenhouse gas exchange data from drained organic forest soils – a review of current approaches and recommendations for future research. Biogeosciences, 2019, 16, 4687-4703.	3.3	13
11	Trade-offs between economic returns, biodiversity, and ecosystem services in the selection of energy peat production sites. Ecosystem Services, 2019, 40, 101027.	5.4	15
12	Greenhouse gas and energy fluxes in a boreal peatland forest after clear-cutting. Biogeosciences, 2019, 16, 3703-3723.	3.3	39
13	Long-term effect of fertilization on the greenhouse gas exchange of low-productive peatland forests. Forest Ecology and Management, 2019, 432, 786-798.	3.2	17
14	Persistent carbon sink at a boreal drained bog forest. Biogeosciences, 2018, 15, 3603-3624.	3.3	47
15	Do logging residue piles trigger extra decomposition of soil organic matter?. Forest Ecology and Management, 2017, 405, 367-380.	3.2	20
16	Spatial modelling provides a novel tool for estimating the landscape level distribution of greenhouse gas balances. Ecological Indicators, 2017, 83, 380-389.	6.3	3
17	Estimating fine-root production by tree species and understorey functional groups in two contrasting peatland forests. Plant and Soil, 2017, 412, 299-316.	3.7	44
18	Methane exchange at the peatland forest floor – automatic chamber system exposes the dynamics of small fluxes. Biogeosciences, 2017, 14, 1947-1967.	3.3	24

Paavo Ojanen

#	Article	IF	CITATIONS
19	Modelling fine root biomass of boreal tree stands using site and stand variables. Forest Ecology and Management, 2016, 359, 361-369.	3.2	43
20	Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe. Biogeosciences, 2014, 11, 6595-6612.	3.3	68
21	Measurements of CO ₂ exchange with an automated chamber system throughout the year: challenges in measuring night-time respiration on porous peat soil. Biogeosciences, 2014, 11, 347-363.	3.3	54
22	Carbon stock changes of forest land in Finland under different levels of wood use and climate change. Annals of Forest Science, 2014, 71, 255-265.	2.0	41
23	Soil CO2 balance and its uncertainty in forestry-drained peatlands in Finland. Forest Ecology and Management, 2014, 325, 60-73.	3.2	31
24	The current greenhouse gas impact of forestry-drained boreal peatlands. Forest Ecology and Management, 2013, 289, 201-208.	3.2	94
25	Chamber measured soil respiration: A useful tool for estimating the carbon balance of peatland forest soils?. Forest Ecology and Management, 2012, 277, 132-140.	3.2	32
26	Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosciences, 2011, 8, 3203-3218.	3.3	101
27	Forest floor photosynthesis and respiration in a drained peatland forest in southern Finland. Plant Ecology and Diversity, 2011, 4, 227-241.	2.4	14
28	Soil–atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drained peatlands. Forest Ecology and Management, 2010, 260, 411-421.	3.2	149
29	Soiden ennallistamisen suoluonto-, vesistö-, ja ilmastovaikutukset. Vertaisarvioitu raportti Suomen Luontopaneelin Iulkaisuia. 0	0.0	2