Fulvio Boano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9472235/publications.pdf Version: 2024-02-01

Ειμνίο Βολνο

#	Article	IF	CITATIONS
1	An innovative framework for real-time monitoring of pollutant point sources in river networks. Stochastic Environmental Research and Risk Assessment, 2022, 36, 1791-1818.	1.9	2
2	Assessment of the Treatment Performance of an Open-Air Green Wall Fed with Graywater under Winter Conditions. ACS ES&T Water, 2021, 1, 595-602.	2.3	10
3	The Effect of Streamflow, Ambient Groundwater, and Sediment Anisotropy on Hyporheic Zone Characteristics in Alternate Bars. Water Resources Research, 2021, 57, .	1.7	9
4	Evaluation of the influence of filter medium composition on treatment performances in an open-air green wall fed with greywater. Journal of Environmental Management, 2021, 300, 113646.	3.8	14
5	A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of the Total Environment, 2020, 711, 134731.	3.9	168
6	A Oneâ€Dimensional Model for Turbulent Mixing in the Benthic Biolayer of Stream and Coastal Sediments. Water Resources Research, 2020, 56, e2019WR026822.	1.7	7
7	Role of the Hyporheic Zone in Increasing the Resilience of Mountain Streams Facing Intermittency. Water (Switzerland), 2020, 12, 2034.	1.2	9
8	Unifying Advective and Diffusive Descriptions of Bedform Pumping in the Benthic Biolayer of Streams. Water Resources Research, 2020, 56, e2020WR027967.	1.7	9
9	Fault detection in level and flow rate sensors for safe and performant remote-control in a water supply system. Journal of Hydroinformatics, 2020, 22, 132-147.	1.1	4
10	Modeling Influence of Sediment Heterogeneity on Nutrient Cycling in Streambeds. Water Resources Research, 2019, 55, 4082-4095.	1.7	33
11	AERMOD as a Gaussian dispersion model for planning tracer gas dispersion tests for landfill methane emission quantification. Waste Management, 2019, 87, 924-936.	3.7	29
12	Flood reduction as an ecosystem service of constructed wetlands for combined sewer overflow. Journal of Hydrology, 2018, 560, 150-159.	2.3	30
13	Modeling chemical gradients in sediments under losing and gaining flow conditions: The GRADIENT code. Advances in Water Resources, 2018, 112, 72-82.	1.7	4
14	Factoring stream turbulence into global assessments of nitrogen pollution. Science, 2018, 359, 1266-1269.	6.0	74
15	Cryptosporidium oocyst persistence in agricultural streams –a mobile-immobile model framework assessment. Scientific Reports, 2018, 8, 4603.	1.6	7
16	Changes in bacteria composition and efficiency of constructed wetlands under sustained overloads: A modeling experiment. Science of the Total Environment, 2018, 612, 1480-1487.	3.9	11
17	Multipurpose Design of the Flow-Control System of a Steep Water Main. Journal of Water Resources Planning and Management - ASCE, 2018, 144, 05017018.	1.3	5
18	Interactions Between Suspended Kaolinite Deposition and Hyporheic Exchange Flux Under Losing and Gaining Flow Conditions. Geophysical Research Letters, 2018, 45, 4077-4085.	1.5	34

FULVIO BOANO

#	Article	IF	CITATIONS
19	Influence of Stream‣ubsurface Exchange Flux and Bacterial Biofilms on Oxygen Consumption Under Nutrientâ€Rich Conditions. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2021-2034.	1.3	21
20	Benthic biofilm controls on fine particle dynamics in streams. Water Resources Research, 2017, 53, 222-236.	1.7	31
21	Biofilmâ€induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure. Geophysical Research Letters, 2017, 44, 4917-4925.	1.5	55
22	Ambient groundwater flow diminishes nitrate processing in the hyporheic zone of streams. Water Resources Research, 2017, 53, 3941-3967.	1.7	36
23	Chlorate formation in water distribution systems: a modeling study. Journal of Hydroinformatics, 2016, 18, 115-125.	1.1	5
24	Biodegradation of labile dissolved organic carbon under losing and gaining streamflow conditions simulated in a laboratory flume. Limnology and Oceanography, 2016, 61, 1839-1852.	1.6	16
25	Impact of watershed topography on hyporheic exchange. Advances in Water Resources, 2016, 94, 400-411.	1.7	37
26	Water Distribution System Modeling and Optimization: A Case Study. Procedia Engineering, 2015, 119, 719-724.	1.2	7
27	Groundwater impact on methane emissions from flooded paddy fields. Advances in Water Resources, 2015, 83, 340-350.	1.7	7
28	Understanding process dynamics at aquifer-surface water interfaces: An introduction to the special section on new modeling approaches and novel experimental technologies. Water Resources Research, 2014, 50, 1847-1855.	1.7	52
29	Decreasing of methanogenic activity in paddy fields via lowering ponding water temperature: A modeling investigation. Soil Biology and Biochemistry, 2014, 75, 211-222.	4.2	6
30	First-Order Contaminant Removal in the Hyporheic Zone of Streams: Physical Insights from a Simple Analytical Model. Environmental Science & Technology, 2014, 48, 11369-11378.	4.6	34
31	Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 2014, 52, 603-679.	9.0	642
32	Community Detection as a Tool for District Metered Areas Identification. Procedia Engineering, 2014, 70, 1518-1523.	1.2	9
33	Modelling the response of laboratory horizontal flow constructed wetlands to unsteady organic loads with HYDRUS-CWM1. Ecological Engineering, 2014, 68, 209-213.	1.6	32
34	Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by duneâ€shaped bed forms. Water Resources Research, 2014, 50, 1895-1907.	1.7	113
35	Comparison of WDN Segmentations Based on Modularity Indexes. Procedia Engineering, 2014, 89, 1216-1223.	1.2	0
36	Modeling the Fate of Disinfection By-products in Water Distribution Systems. Procedia Engineering, 2014, 89, 255-261.	1.2	2

FULVIO BOANO

#	Article	IF	CITATIONS
37	Role of water flow in modeling methane emissions from flooded paddy soils. Advances in Water Resources, 2013, 52, 261-274.	1.7	12
38	Can microbial fuel cells be an effective mitigation strategy for methane emissions from paddy fields?. Ecological Engineering, 2013, 60, 167-171.	1.6	20
39	Recovering the Release History of a Pollutant Intrusion into a Water Supply System through a Geostatistical Approach. Journal of Water Resources Planning and Management - ASCE, 2013, 139, 418-425.	1.3	3
40	Community detection as a tool for complex pipe network clustering. Europhysics Letters, 2013, 103, 48001.	0.7	25
41	The impacts of increasing current velocity on the drift ofSimulium monticola(Diptera: Simuliidae): a laboratory approach. Italian Journal of Zoology, 2013, 80, 443-448.	0.6	11
42	Modeling hyporheic exchange with unsteady stream discharge and bedform dynamics. Water Resources Research, 2013, 49, 4089-4099.	1.7	39
43	Smallâ€scale permeability heterogeneity has negligible effects on nutrient cycling in streambeds. Geophysical Research Letters, 2013, 40, 1118-1122.	1.5	48
44	Nutrient cycling in bedform induced hyporheic zones. Geochimica Et Cosmochimica Acta, 2012, 84, 47-61.	1.6	191
45	Water and solute exchange through flat streambeds induced by large turbulent eddies. Journal of Hydrology, 2011, 402, 290-296.	2.3	31
46	Effect of streamflow stochasticity on bedform-driven hyporheic exchange. Advances in Water Resources, 2010, 33, 1367-1374.	1.7	35
47	Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Advances in Water Resources, 2010, 33, 1291-1295.	1.7	236
48	A linear model for the coupled surfaceâ€subsurface flow in a meandering stream. Water Resources Research, 2010, 46, .	1.7	34
49	Comment on "Pore water flow due to nearâ€bed turbulence and associated solute transfer in a stream or lake sediment bed―by M. Higashino et al Water Resources Research, 2010, 46, .	1.7	4
50	Biogeochemical zonation due to intrameander hyporheic flow. Water Resources Research, 2010, 46, .	1.7	136
51	Quantifying the impact of groundwater discharge on the surface–subsurface exchange. Hydrological Processes, 2009, 23, 2108-2116.	1.1	60
52	Gravityâ€driven water exchange between streams and hyporheic zones. Geophysical Research Letters, 2009, 36, .	1.5	32
53	Reduction of the hyporheic zone volume due to the streamâ€aquifer interaction. Geophysical Research Letters, 2008, 35, .	1.5	107
54	Intraâ€meander hyporheic flow in alluvial rivers. Water Resources Research, 2008, 44, .	1.7	72

FULVIO BOANO

#	Article	IF	CITATIONS
55	A continuous time random walk approach to the stream transport of solutes. Water Resources Research, 2007, 43, .	1.7	110
56	Bedform-induced hyporheic exchange with unsteady flows. Advances in Water Resources, 2007, 30, 148-156.	1.7	132
57	Sinuosity-driven hyporheic exchange in meandering rivers. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	159
58	Stochastic modelling of DO and BOD components in a stream with random inputs. Advances in Water Resources, 2006, 29, 1341-1350.	1.7	32
59	Source identification in river pollution problems: A geostatistical approach. Water Resources Research, 2005, 41, .	1.7	41