Jong-Beom Baek

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9472203/jong-beom-baek-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23,683 67 150 279 h-index g-index citations papers 10.8 26,541 7.38 291 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
279	Abrading bulk metal into single atoms <i>Nature Nanotechnology</i> , 2022 ,	28.7	12
278	Unveiling the critical role of active site interaction in single atom catalyst towards hydrogen evolution catalysis. <i>Nano Energy</i> , 2022 , 93, 106819	17.1	3
277	Neohexene graphitic nanoplatelets for reinforced low-density polyethylene. <i>Journal of Polymer Research</i> , 2022 , 29, 1	2.7	1
276	Synthesis of all-biomass-derived carbon nanofibers for dual-functional filtration membranes and oxygen evolution reaction electrocatalysts. <i>Journal of Alloys and Compounds</i> , 2022 , 165600	5.7	
275	Direct conversion of aromatic amides into crystalline covalent triazine frameworks by a condensation mechanism. <i>Cell Reports Physical Science</i> , 2021 , 2, 100653	6.1	1
274	Fused aromatic networks as a new class of gas hydrate inhibitors. <i>Chemical Engineering Journal</i> , 2021 , 133691	14.7	2
273	3D Porous Fused Aromatic Networks for High Performance Gas and Iodine Uptakes (Adv. Mater. Interfaces 22/2021). <i>Advanced Materials Interfaces</i> , 2021 , 8, 2170128	4.6	
272	3D Porous Fused Aromatic Networks for High Performance Gas and Iodine Uptakes. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2101373	4.6	0
271	Fused Aromatic Network Structures: Fused Aromatic Network with Exceptionally High Carrier Mobility (Adv. Mater. 9/2021). <i>Advanced Materials</i> , 2021 , 33, 2170063	24	
270	Electrochemical Catalysts for Green Hydrogen Energy. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100019	1.6	2
269	Catalyst- and Solvent-Free Synthesis of a Chemically Stable Aza-Bridged Bis(phenanthroline) Macrocycle-Linked Covalent Organic Framework. <i>Angewandte Chemie</i> , 2021 , 133, 17328-17334	3.6	1
268	Catalyst- and Solvent-Free Synthesis of a Chemically Stable Aza-Bridged Bis(phenanthroline) Macrocycle-Linked Covalent Organic Framework. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17191-17197	16.4	5
267	Surface Electronic Modulation with Hetero-Single Atoms to Enhance Oxygen Evolution Catalysis. <i>ACS Nano</i> , 2021 ,	16.7	10
266	Recent Progress in Porous Fused Aromatic Networks and Their Applications. <i>Small Science</i> , 2021 , 1, 200	0007	6
265	Mechanochemistry for ammonia synthesis under mild conditions. <i>Nature Nanotechnology</i> , 2021 , 16, 325	5-38. 9	51
264	Anomalous phonon softening of G-band in compressed graphitic carbon nitride due to strong electrostatic repulsion. <i>Applied Physics Letters</i> , 2021 , 118, 023103	3.4	0
263	An Overview of Cellulose-Based Nanogenerators. <i>Advanced Materials Technologies</i> , 2021 , 6, 2001164	6.8	11

(2020-2021)

Active Site Engineering in Transition Metal Based Electrocatalysts for Green Energy Applications. <i>Accounts of Materials Research</i> , 2021 , 2, 147-158	7.5	5
Cellulose-Based Nanogenerators: An Overview of Cellulose-Based Nanogenerators (Adv. Mater. Technol. 3/2021). <i>Advanced Materials Technologies</i> , 2021 , 6, 2170018	6.8	О
Fused aromatic networks with the different spatial arrangement of structural units. <i>Cell Reports Physical Science</i> , 2021 , 100502	6.1	0
The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. <i>Nano Energy</i> , 2021 , 87, 106162	17.1	34
Synthesis of Saddle-Shape Octaaminotetraphenylene Octahydrochloride. <i>Journal of Organic Chemistry</i> , 2021 , 86, 14398-14403	4.2	1
Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production. <i>Advanced Materials</i> , 2021 , e2103266	24	18
Direct preparation of edge-propylene graphitic nanoplatelets and its reinforcing effects in polypropylene. <i>Composites Communications</i> , 2021 , 27, 100896	6.7	3
Effect of the carboxyl functional group at the edges of graphene on the signal sensitivity of dopamine detection. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 898, 115628	4.1	6
Reinforcement of polystyrene using edge-styrene graphitic nanoplatelets. <i>Journal of Materials Research and Technology</i> , 2021 , 10, 662-670	5.5	6
Fused Aromatic Network with Exceptionally High Carrier Mobility. <i>Advanced Materials</i> , 2021 , 33, e2004	707	6
Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production (Adv. Mater. 49/2021). <i>Advanced Materials</i> , 2021 , 33, 2170389	24	1
Nanocatalytic Materials for Energy-Related Small-Molecules Conversions: Active Site Design, Identification and Structure-Performance Relationship Discovery <i>Accounts of Chemical Research</i> , 2021 ,	24.3	2
Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to HO. <i>Nature Communications</i> , 2020 , 11, 2209	17.4	107
Edge-NFx (x=1 or 2) Protected Graphitic Nanoplatelets as a Stable Lithium Storage Material. <i>Batteries and Supercaps</i> , 2020 , 3, 928-935	5.6	1
Identifying the electrocatalytic active sites of a Ru-based catalyst with high Faraday efficiency in CO2-saturated media for an aqueous ZntO2 system. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14927-1	4934	10
Forming indium-carbon (In ©) bonds at the edges of graphitic nanoplatelets. <i>Materials Today Advances</i> , 2020 , 6, 100030	7.4	4
Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. <i>Nature Communications</i> , 2020 , 11, 1278	17.4	156
Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework. Communications Chemistry, 2020, 3,	6.3	10
	Accounts of Materials Research, 2021, 2, 147-158 Cellulose-Based Nanogenerators: An Overview of Cellulose-Based Nanogenerators (Adv. Mater. Technol. 3/2021). Advanced Materials Technologies, 2021, 6, 2170018 Fused aromatic networks with the different spatial arrangement of structural units. Cell Reports Physical Science, 2021, 100502 The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy, 2021, 87, 106162 Synthesis of Saddle-Shape Octaminotetraphenylene Octahydrochloride. Journal of Organic Chemistry, 2021, 86, 14398-14403 Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Advanced Materials, 2021, e2103266 Direct preparation of edge-propylene graphitic nanoplatelets and its reinforcing effects in polypropylene. Composites Communications, 2021, 27, 100896 Effect of the carboxyl functional group at the edges of graphene on the signal sensitivity of dopamine detection. Journal of Electroanalytical Chemistry, 2021, 898, 115628 Reinforcement of polystyrene using edge-styrene graphitic nanoplatelets. Journal of Materials Research and Technology, 2021, 10, 662-670 Fused Aromatic Network with Exceptionally High Carrier Mobility. Advanced Materials, 2021, 33, e2004 Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production (Adv. Mater. 49/2021). Advanced Materials for Engrepental Stronger Related Small-Molecules Conversions: Active Site Design, Identification and Structure-Performance Relationship Discovery Accounts of Chemical Research, 2021, Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to HO. Nature Communications, 2020, 11, 2209 Edge-NFX (x=1 or 2) Protected Graphilitic Nanoplatelets as a Stable Lithium Storage Material. Batteries and Supercaps, 2020, 3, 928-935 Identifying the electrocatalytic active sites of a Ru-based catalyst with high Faraday efficiency in CO2-saturated media for an aqueous ZnfLO2 system. Journal of Materials Chemistry A, 2020, 8, 14927-1 Forming	Accounts of Materials Research, 2021, 2, 147-158 Cellulose-Based Nanogenerators: An Overview of Cellulose-Based Nanogenerators (Adv. Mater. Technol. 3/2021). Advanced Materials Technologies, 2021, 6, 2170018 Fused aromatic networks with the different spatial arrangement of structural units. Cell Reports Physical Science, 2021, 100502 The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy, 2021, 87, 106162 Synthesis of Saddle-Shape Octaaminotetraphenylene Octahydrochloride. Journal of Organic Chemistry, 2021, 86, 14398-14403 Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Advanced Materials, 2021, e2103266 Direct preparation of edge-propylene graphitic nanoplatelets and its reinforcing effects in polypropylene. Composites Communications, 2021, 27, 100896 Effect of the carboxyl functional group at the edges of graphene on the signal sensitivity of dopamine detection. Journal of Electroanalytical Chemistry, 2021, 898, 113628 Reinforcement of polystyrene using edge-styrene graphitic nanoplatelets. Journal of Materials Research and Technology, 2021, 10, 662-670 Fused Aromatic Network with Exceptionally High Carrier Mobility. Advanced Materials, 2021, 33, e2004702, Advanced Materials, 2021, 33, 2170389 Nanocatalytic Materials for Energy-Related Small-Molecules Conversions: Active Site Design, Identification and Structure-Performance Relationship Discovery. Accounts of Chemical Research, 2021, 32, 28935 Identifying the electrocatalytic active oxygenated groups in carbon materials for oxygen reduction to HO. Nature Communications, 2020, 11, 2209 Edge-NFX (x=1 or 2) Protected Graphitic Nanoplatelets as a Stable Lithium Storage Material. Batteries and Supercaps, 2020, 3, 928-935 Identifying the electrocatalytic active sites of a Ru-based catalyst with high Faraday efficiency in CO2-saturated media for an aqueous ZnEO2 system. Journal of Materials Chemistry A, 2020, 8, 14927-14934 Froming Indium-carbon (InII) bonds at the edges of graphit

244	Graphene and molybdenum disulphide hybrids for energy applications: an update. <i>Materials Today Advances</i> , 2020 , 6, 100053	7.4	18
243	Vertical two-dimensional layered fused aromatic ladder structure. <i>Nature Communications</i> , 2020 , 11, 2021	17.4	14
242	Edge-selective decoration with ruthenium at graphitic nanoplatelets for efficient hydrogen production at universal pH. <i>Nano Energy</i> , 2020 , 76, 105114	17.1	11
241	Nitrogen-Doped Carbon Nanomaterials: Synthesis, Characteristics and Applications. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 2282-2293	4.5	38
240	Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. <i>Nanoscale Horizons</i> , 2020 , 5, 43-56	10.8	101
239	Recent Advances in Noble Metal (Pt, Ru, and Ir)-Based Electrocatalysts for Efficient Hydrogen Evolution Reaction. <i>ACS Omega</i> , 2020 , 5, 31-40	3.9	149
238	Iron encased organic networks with enhanced lithium storage properties. Energy Storage, 2020, 2, e114	2.8	2
237	Heptene-functionalized graphitic nanoplatelets for high-performance composites of linear low-density polyethylene. <i>Composites Science and Technology</i> , 2020 , 199, 108380	8.6	8
236	Enhancing the Photocatalytic Activity of TiO2 Catalysts. <i>Advanced Sustainable Systems</i> , 2020 , 4, 200019	7 5.9	22
235	Revealing Isolated M-N C Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23678-23683	16.4	30
234	Revealing Isolated MN3C1 Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. <i>Angewandte Chemie</i> , 2020 , 132, 23886-23891	3.6	8
233	Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. <i>Nature Communications</i> , 2019 , 10, 4060	17.4	70
232	Tuning edge-oxygenated groups on graphitic carbon materials against corrosion. <i>Nano Energy</i> , 2019 , 66, 104112	17.1	7
231	Paramagnetic Carbon Nanosheets with Random Hole Defects and Oxygenated Functional Groups. <i>Angewandte Chemie</i> , 2019 , 131, 11796-11801	3.6	1
230	Identifying the structure of Zn-N active sites and structural activation. <i>Nature Communications</i> , 2019 , 10, 2623	17.4	50
229	Paramagnetic Carbon Nanosheets with Random Hole Defects and Oxygenated Functional Groups. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11670-11675	16.4	4
228	Room-Temperature Organic Ferromagnetism. <i>CheM</i> , 2019 , 5, 1012-1014	16.2	4
227	Edge-thionic acid-functionalized graphene nanoplatelets as anode materials for high-rate lithium ion batteries. <i>Nano Energy</i> , 2019 , 62, 419-425	17.1	16

226	Oxidative Dehydrogenation of Ethylbenzene into Styrene by Fe-Graphitic Catalysts. <i>ACS Nano</i> , 2019 , 13, 5893-5899	16.7	12
225	Synergistic Coupling Derived Cobalt Oxide with Nitrogenated Holey Two-Dimensional Matrix as an Efficient Bifunctional Catalyst for Metal-Air Batteries. <i>ACS Nano</i> , 2019 , 13, 5502-5512	16.7	62
224	Graphene Nanoplatelets: Edge-Functionalized Graphene Nanoplatelets as Metal-Free Electrocatalysts for Dye-Sensitized Solar Cells (Adv. Mater. 13/2019). <i>Advanced Materials</i> , 2019 , 31, 1970	0 09 1	1
223	Innentitelbild: Paramagnetic Carbon Nanosheets with Random Hole Defects and Oxygenated Functional Groups (Angew. Chem. 34/2019). <i>Angewandte Chemie</i> , 2019 , 131, 11668-11668	3.6	
222	Converting Unstable Imine-Linked Network into Stable Aromatic Benzoxazole-Linked One via Post-oxidative Cyclization. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11786-11790	16.4	50
221	Forming layered conjugated porous BBL structures. <i>Polymer Chemistry</i> , 2019 , 10, 4185-4193	4.9	6
220	Metal (Mଢ଼ Ru, Pd and Co) embedded in C2N with enhanced lithium storage properties. <i>Materials Today Energy</i> , 2019 , 14, 100359	7	9
219	Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. <i>Science Advances</i> , 2019 , 5, eaax8275	14.3	8
218	Low-Temperature Conversion of Alcohols into Bulky Nanoporous Graphene and Pure Hydrogen with Robust Selectivity on CaO. <i>Advanced Materials</i> , 2019 , 31, e1807267	24	16
217	Edge-Functionalized Graphene Nanoplatelets as Metal-Free Electrocatalysts for Dye-Sensitized Solar Cells. <i>Advanced Materials</i> , 2019 , 31, e1804440	24	29
216	Fused Aromatic Network Structures as a Platform for Efficient Electrocatalysis. <i>Advanced Materials</i> , 2019 , 31, e1805062	24	22
215	Scalable Synthesis of Tetrapodal Octaamine. European Journal of Organic Chemistry, 2019, 2019, 2335-2	3338	4
214	Robust fused aromatic pyrazine-based two-dimensional network for stably cocooning iron nanoparticles as an oxygen reduction electrocatalyst. <i>Nano Energy</i> , 2019 , 56, 581-587	17.1	24
213	Edge-carboxylated graphene nanoplatelets as efficient electrode materials for electrochemical supercapacitors. <i>Carbon</i> , 2019 , 142, 89-98	10.4	39
212	Direct Synthesis of a Covalent Triazine-Based Framework from Aromatic Amides. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8438-8442	16.4	129
211	Direct Synthesis of a Covalent Triazine-Based Framework from Aromatic Amides. <i>Angewandte Chemie</i> , 2018 , 130, 8574-8578	3.6	29
210	A Robust 3D Cage-like Ultramicroporous Network Structure with High Gas-Uptake Capacity. <i>Angewandte Chemie</i> , 2018 , 130, 3473-3478	3.6	4
209	A Robust 3D Cage-like Ultramicroporous Network Structure with High Gas-Uptake Capacity. Angewandte Chemie - International Edition, 2018, 57, 3415-3420	16.4	34

208	Boron-nitrogen-phosphorous doped graphene nanoplatelets for enhanced electrocatalytic activity. <i>European Polymer Journal</i> , 2018 , 99, 511-517	5.2	14
207	Defect-Free Encapsulation of Fe in 2D Fused Organic Networks as a Durable Oxygen Reduction Electrocatalyst. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1737-1742	16.4	103
206	3D Macroporous MoxC@N-C with Incorporated Mo Vacancies as Anodes for High-Performance Lithium-Ion Batteries. <i>Small Methods</i> , 2018 , 2, 1800040	12.8	26
205	Organic Ferromagnetism: Trapping Spins in the Glassy State of an Organic Network Structure. <i>CheM</i> , 2018 , 4, 2357-2369	16.2	29
204	Hyperbranched Macromolecules: From Synthesis to Applications. <i>Molecules</i> , 2018 , 23,	4.8	31
203	A New Strategy for Outstanding Performance and Durability in Acidic Fuel Cells: A Small Amount Pt Anchored on Fe, N co-Doped Graphene Nanoplatelets. <i>ChemElectroChem</i> , 2018 , 5, 2857-2862	4.3	13
202	Boosting oxygen reduction catalysis with abundant copper single atom active sites. <i>Energy and Environmental Science</i> , 2018 , 11, 2263-2269	35.4	301
201	Fe@C2N: A highly-efficient indirect-contact oxygen reduction catalyst. <i>Nano Energy</i> , 2018 , 44, 304-310	17.1	85
200	Direct and efficient conversion from low-quality graphite to high-quality graphene nanoplatelets. <i>FlatChem</i> , 2018 , 12, 10-16	5.1	5
199	Hydrogen Evolution Reaction: Encapsulating Iridium Nanoparticles Inside a 3D Cage-Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction (Adv. Mater. 52/2018). <i>Advanced Materials</i> , 2018 , 30, 1870401	24	2
198	Encapsulating Iridium Nanoparticles Inside a 3D Cage-Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2018 , 30, e1805606	24	69
197	Molybdenum-Based Carbon Hybrid Materials to Enhance the Hydrogen Evolution Reaction. <i>Chemistry - A European Journal</i> , 2018 , 24, 18158-18179	4.8	33
196	Hydrogen Evolution Reaction: Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media (Adv. Mater. 44/2018). <i>Advanced Materials</i> , 2018 , 30, 1870330	24	13
195	Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media. <i>Advanced Materials</i> , 2018 , 30, e1803676	24	125
194	Functionalized Graphene-Based, Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells 2018 , 529-554		1
193	Construction of Porous Mo3P/Mo Nanobelts as Catalysts for Efficient Water Splitting. <i>Angewandte Chemie</i> , 2018 , 130, 14335-14339	3.6	6
192	Construction of Porous Mo P/Mo Nanobelts as Catalysts for Efficient Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 14139-14143	16.4	53
191	Controlled Fabrication of Hierarchically Structured Nitrogen-Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst. <i>Advanced Functional Materials</i> , 2017 , 27, 1605717	15.6	62

(2017-2017)

190	Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries. <i>Nano Research</i> , 2017 , 10, 1268-1281	10	36
189	Defect/Edge-Selective Functionalization of Carbon Materials by "Direct" Friedel-Crafts Acylation Reaction. <i>Advanced Materials</i> , 2017 , 29, 1606317	24	18
188	Electrocatalyts: Controlled Fabrication of Hierarchically Structured Nitrogen-Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017 , 27,	15.6	1
187	Heavily aluminated graphene nanoplatelets as an efficient flame-retardant. <i>Carbon</i> , 2017 , 116, 77-83	10.4	32
186	An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. <i>Nature Nanotechnology</i> , 2017 , 12, 441-446	28.7	857
185	Reinforcement efficiency of carbon nanotubes and their effect on crystal-crystal slip in poly(ether ketone)/carbon nanotube composite fibers. <i>Composites Science and Technology</i> , 2017 , 147, 116-125	8.6	11
184	Two-Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. <i>ChemNanoMat</i> , 2017 , 3, 373-391	3.5	82
183	One-Pot Purification and Iodination of Waste Kish Graphite into High-Quality Electrocatalyst. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600426	3.1	4
182	Nitrogen-rich two-dimensional porous polybenzimidazole network as a durable metal-free electrocatalyst for a cobalt reduction reaction in organic dye-sensitized solar cells. <i>Nano Energy</i> , 2017 , 34, 533-540	17.1	11
181	Electrocatalysis: Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst (Small 40/2017). <i>Small</i> , 2017 , 13,	11	1
180	Fluorine Functionalized Graphene Nano Platelets for Highly Stable Inverted Perovskite Solar Cells. <i>Nano Letters</i> , 2017 , 17, 6385-6390	11.5	84
179	Enhanced electrocatalytic performance of Pt nanoparticles on triazine-functionalized graphene nanoplatelets for both oxygen and iodine reduction reactions. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21936-21946	13	9
178	2D Frameworks of C N and C N as New Anode Materials for Lithium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1702007	24	196
177	Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst. <i>Small</i> , 2017 , 13, 1701167	11	59
176	Ultrasonic Chemistry: Carbon⊞eteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems (Adv. Mater. 47/2017). <i>Advanced Materials</i> , 2017 , 29, 1770339	24	4
175	Charge transport in graphene oxide. <i>Nano Today</i> , 2017 , 17, 38-53	17.9	20
174	Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals. <i>Nature Communications</i> , 2017 , 8, 1599	17.4	9
173	Carbon-Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems. <i>Advanced Materials</i> , 2017 , 29, 1702747	24	23

172	Macroporous Inverse Opal-like MoC with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. <i>ACS Nano</i> , 2017 , 11, 7527-7533	16.7	84
171	A facile approach to tailoring electrocatalytic activities of imine-rich nitrogen-doped graphene for oxygen reduction reaction. <i>Carbon</i> , 2017 , 122, 515-523	10.4	22
170	Simple solution-based synthesis of pyridinic-rich nitrogen-doped graphene nanoplatelets for supercapacitors. <i>Applied Energy</i> , 2017 , 195, 1071-1078	10.7	46
169	Metalated graphene nanoplatelets and their uses as anode materials for lithium-ion batteries. <i>2D Materials</i> , 2017 , 4, 014002	5.9	13
168	Eco-friendly synthesis of graphene nanoplatelets. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15281-1529	3 13	18
167	Edge-selenated graphene nanoplatelets as durable metal-free catalysts for iodine reduction reaction in dye-sensitized solar cells. <i>Science Advances</i> , 2016 , 2, e1501459	14.3	76
166	Nanoporous Graphene Enriched with Fe/Co-N Active Sites as a Promising Oxygen Reduction Electrocatalyst for Anion Exchange Membrane Fuel Cells. <i>Advanced Functional Materials</i> , 2016 , 26, 2150	- 2 562	245
165	Effects of process parameters and surface treatments of graphene nanoplatelets on the crystallinity and thermomechanical properties of polyamide 6 composite fibers. <i>Composites Part B: Engineering</i> , 2016 , 100, 220-227	10	35
164	Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 7414-9	11.5	278
163	Unusually Stable Triazine-based Organic Superstructures. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7413-7	16.4	4
162	Cloud-like graphene nanoplatelets on Nd0.5Sr0.5CoO3Ihanorods as an efficient bifunctional electrocatalyst for hybrid Lillir batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2122-2127	13	46
161	Functionalized graphene nanoplatelets from ball milling for energy applications. <i>Current Opinion in Chemical Engineering</i> , 2016 , 11, 52-58	5.4	62
160	Nitrogen-Doped Graphene for Photocatalytic Hydrogen Generation. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1125-37	4.5	49
159	Edge-halogenated graphene nanoplatelets with F, Cl, or Br as electrocatalysts for all-vanadium redox flow batteries. <i>Nano Energy</i> , 2016 , 26, 233-240	17.1	82
158	Edge-selectively antimony-doped graphene nanoplatelets as an outstanding counter electrode with an unusual electrochemical stability for dye-sensitized solar cells employing cobalt electrolytes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9029-9037	13	32
157	Covalently functionalized graphene with organic semiconductors for energy and optoelectronic applications. <i>Materials Research Express</i> , 2016 , 3, 044001	1.7	7
156	Metalloid tellurium-doped graphene nanoplatelets as ultimately stable electrocatalysts for cobalt reduction reaction in dye-sensitized solar cells. <i>Nano Energy</i> , 2016 , 30, 867-876	17.1	37
155	Conformational Transitions of Polymer Brushes for Reversibly Switching Graphene Transistors. Macromolecules. 2016, 49, 7434-7441	5.5	15

(2015-2016)

154	Fe@N-Graphene Nanoplatelet-Embedded Carbon Nanofibers as Efficient Electrocatalysts for Oxygen Reduction Reaction. <i>Advanced Science</i> , 2016 , 3, 1500205	13.6	39
153	Energy Conversion: Fe@N-Graphene Nanoplatelet-Embedded Carbon Nanofibers as Efficient Electrocatalysts for Oxygen Reduction Reaction (Adv. Sci. 1/2016). <i>Advanced Science</i> , 2016 , 3,	13.6	78
152	Nitrogenated holey two-dimensional structures. <i>Nature Communications</i> , 2015 , 6, 6486	17.4	684
151	Mechanochemically driven iodination of activated charcoal for metal-free electrocatalyst for fuel cells and hybrid Li-air cells. <i>Carbon</i> , 2015 , 93, 465-472	10.4	9
150	Cobalt Oxide Encapsulated in C2N-h2D Network Polymer as a Catalyst for Hydrogen Evolution. <i>Chemistry of Materials</i> , 2015 , 27, 4860-4864	9.6	105
149	Graphene based 2D-materials for supercapacitors. 2D Materials, 2015, 2, 032002	5.9	60
148	High-performance dye-sensitized solar cells using edge-halogenated graphene nanoplatelets as counter electrodes. <i>Nano Energy</i> , 2015 , 13, 336-345	17.1	78
147	Graphene nanoplatelets with selectively functionalized edges as electrode material for electrochemical energy storage. <i>Langmuir</i> , 2015 , 31, 5676-83	4	23
146	Metal-free catalysts for oxygen reduction reaction. <i>Chemical Reviews</i> , 2015 , 115, 4823-92	68.1	1763
145	Wet-chemical nitrogen-doping of graphene nanoplatelets as electrocatalysts for the oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7659-7665	13	39
144	Exploration of the Effective Location of Surface Oxygen Defects in Graphene-Based Electrocatalysts for All-Vanadium Redox-Flow Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1401550	21.8	90
143	Scalable Production of Edge-Functionalized Graphene Nanoplatelets via Mechanochemical Ball-Milling. <i>Advanced Functional Materials</i> , 2015 , 25, 6961-6975	15.6	105
142	Antimony-doped graphene nanoplatelets. <i>Nature Communications</i> , 2015 , 6, 7123	17.4	68
141	Fluorine: Edge-Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye-Sensitized Solar Cells and Lithium Ion Batteries (Adv. Funct. Mater. 8/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 1328-1328	15.6	6
140	Doped graphene supercapacitors. <i>Nanotechnology</i> , 2015 , 26, 492001	3.4	67
139	Edge-Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye-Sensitized Solar Cells and Lithium Ion Batteries. <i>Advanced Functional Materials</i> , 2015 , 25, 1170-1179	15.6	146
138	Graphene and molybdenum disulfide hybrids: synthesis and applications. <i>Materials Today</i> , 2015 , 18, 286	6- 29.8	115

136	Graphene nanoplatelets doped with N at its edges as metal-free cathodes for organic dye-sensitized solar cells. <i>Advanced Materials</i> , 2014 , 26, 3055-62	24	132
135	Direct solvothermal synthesis of B/N-doped graphene. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2398-401	16.4	57
134	B-Doped Graphene as an Electrochemically Superior Metal-Free Cathode Material As Compared to Pt over a Co(II)/Co(III) Electrolyte for Dye-Sensitized Solar Cell. <i>Chemistry of Materials</i> , 2014 , 26, 3586-35	i 9 f	53
133	Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells. <i>Advanced Materials</i> , 2014 , 26, 786-90	24	94
132	A solvent-free Diels-Alder reaction of graphite into functionalized graphene nanosheets. <i>Chemical Communications</i> , 2014 , 50, 14651-3	5.8	27
131	Two and three dimensional network polymers for electrocatalysis. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 11150-61	3.6	8
130	Graphene phosphonic acid as an efficient flame retardant. ACS Nano, 2014, 8, 2820-5	16.7	136
129	Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries. <i>Advanced Materials</i> , 2014 , 26, 7317-23	24	133
128	Edge-carboxylated graphene nanoplatelets as oxygen-rich metal-free cathodes for organic dye-sensitized solar cells. <i>Energy and Environmental Science</i> , 2014 , 7, 1044-1052	35.4	76
127	Edge-iodine/sulfonic acid-functionalized graphene nanoplatelets as efficient electrocatalysts for oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8690-8695	13	39
126	Graphene in photovoltaic applications: organic photovoltaic cells (OPVs) and dye-sensitized solar cells (DSSCs). <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12136	13	89
125	Modeling, processing, and characterization of exfoliated graphite nanoplatelet-nylon 6 composite fibers. <i>Composites Part B: Engineering</i> , 2014 , 66, 511-517	10	13
124	Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries. <i>ACS Nano</i> , 2014 , 8, 10920-30	16.7	192
123	Electrochemical supercapacitors from conducting polyaniline-graphene platforms. <i>Chemical Communications</i> , 2014 , 50, 6298-308	5.8	141
122	Solvent-free mechanochemical reduction of graphene oxide. <i>Carbon</i> , 2014 , 77, 501-507	10.4	33
121	Direct Solvothermal Synthesis of B/N-Doped Graphene. <i>Angewandte Chemie</i> , 2014 , 126, 2430-2433	3.6	11
120	Lanthanide(III) dendrimer complexes based on diphenylquinoxaline derivatives for photonic amplification. <i>Macromolecular Research</i> , 2013 , 21, 556-564	1.9	6
119	Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect. <i>Advanced Materials</i> , 2013 , 25, 6138-45	24	465

118	Mechanochemically driven solid-state DielsAlder reaction of graphite into graphene nanoplatelets. <i>Chemical Science</i> , 2013 , 4, 4273	9.4	42
117	Nb-doped TiO2 nanoparticles for organic dye-sensitized solar cells. <i>RSC Advances</i> , 2013 , 3, 16380	3.7	65
116	The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture. <i>Carbon</i> , 2013 , 52, 493-498	10.4	46
115	Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1386-93	16.4	497
114	Efficient energy transfer between amphiphilic dendrimers with oligo(p-phenylenevinylene) core branches and oligo(ethylene oxide) termini in micelles. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 168-	·1 ² 7§	5
113	Chapter 1:Conducting Polymer-based Carbon Nanotube Composites: Preparation and Applications. <i>RSC Nanoscience and Nanotechnology</i> , 2013 , 1-21		2
112	Nitrogen-doped graphene nanoplatelets from simple solution edge-functionalization for n-type field-effect transistors. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8981-8	16.4	102
111	Edge-selectively functionalized graphene nanoplatelets. <i>Chemical Record</i> , 2013 , 13, 224-38	6.6	30
110	N-Doped graphene nanoplatelets as superior metal-free counter electrodes for organic dye-sensitized solar cells. <i>ACS Nano</i> , 2013 , 7, 5243-50	16.7	220
109	Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. <i>Scientific Reports</i> , 2013 , 3, 1810	4.9	278
108	Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. <i>Scientific Reports</i> , 2013 , 3, 2260	4.9	179
107	Scalable Synthesis of Pure and Stable Hexaaminobenzene Trihydrochloride. <i>Synlett</i> , 2013 , 24, 246-248	2.2	18
106	Mild and Nondestructive Chemical Modification of Carbon Nanotubes (CNTs): Direct Friedel-Crafts Acylation Reaction 2013 ,		2
105	Immobilization of platinum nanoparticles on 3,4-diaminobenzoyl-functionalized multi-walled carbon nanotube and its electrocatalytic activity. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	6
104	Graphene for energy conversion and storage in fuel cells and supercapacitors. <i>Nano Energy</i> , 2012 , 1, 53.	4 15/5 11	548
103	Large clusters and hollow microfibers by multicomponent self-assembly of citrate stabilized gold nanoparticles with temperature-responsive amphiphilic dendrimers. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13365		5
102	Strain-induced delamination of edge-grafted graphite. Chemical Communications, 2012, 48, 11109-11	5.8	4
101	Multifunctional quinoxaline containing small molecules with multiple electron-donating moieties: Solvatochromic and optoelectronic properties. <i>Synthetic Metals</i> , 2012 , 162, 1169-1176	3.6	26

100	Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length. <i>Water Research</i> , 2012 , 46, 4521-31	12.5	54
99	Edge-carboxylated graphene nanosheets via ball milling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 5588-93	11.5	496
98	Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. <i>ACS Nano</i> , 2012 , 6, 1715-23	16.7	724
97	Edge-exfoliated graphites for facile kinetics of delithiation. ACS Nano, 2012, 6, 10770-5	16.7	23
96	Water-dispersible, sulfonated hyperbranched poly(ether-ketone) grafted multiwalled carbon nanotubes as oxygen reduction catalysts. <i>ACS Nano</i> , 2012 , 6, 6345-55	16.7	48
95	Molecular engineering of conjugated polymers for solar cells and field-effect transistors: Side-chain versus main-chain electron acceptors. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 271-279	2.5	6
94	Carbon nanomaterials for advanced energy conversion and storage. Small, 2012, 8, 1130-66	11	1149
93	Carbon Nanomaterials: Carbon Nanomaterials for Advanced Energy Conversion and Storage (Small 8/2012). <i>Small</i> , 2012 , 8, 1122-1122	11	13
92	Electrochemical supercapacitors based on a novel graphene/conjugated polymer composite system. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12268		55
91	Bistriphenylamine-based organic sensitizers with high molar extinction coefficients for dye-sensitized solar cells. <i>RSC Advances</i> , 2012 , 2, 6209	3.7	18
90	BCN Graphene as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. <i>Angewandte Chemie</i> , 2012 , 124, 4285-4288	3.6	151
89	BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4209-12	16.4	996
88	Stability of multi-walled carbon nanotubes in commonly used acidic media. <i>Carbon</i> , 2012 , 50, 1465-1476	510.4	45
87	Note: Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method. <i>Review of Scientific Instruments</i> , 2012 , 83, 016103	1.7	26
86	Reversible adsorption of conjugated amphiphilic dendrimers onto reduced graphene oxide (rGO) for fluorescence sensing. <i>Soft Matter</i> , 2011 , 7, 8352	3.6	16
85	Highly conducting and flexible few-walled carbon nanotube thin film. ACS Nano, 2011, 5, 2324-31	16.7	51
84	Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. <i>ACS Nano</i> , 2011 , 5, 6202-9	16.7	617
83	Formation of Large-Area Nitrogen-Doped Graphene Film Prepared from Simple Solution Casting of Edge-Selectively Functionalized Graphite and Its Electrocatalytic Activity. <i>Chemistry of Materials</i> , 2011 , 23, 3987-3992	9.6	161

(2010-2011)

82	Preparation and Electrocatalytic Activity of Gold Nanoparticles Immobilized on the Surface of 4-Mercaptobenzoyl-Functionalized Multiwalled Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 1746-1751	3.8	18
81	Novel quinoxaline-based organic sensitizers for dye-sensitized solar cells. <i>Organic Letters</i> , 2011 , 13, 388	306 3	152
80	Large-area graphene films by simple solution casting of edge-selectively functionalized graphite. <i>ACS Nano</i> , 2011 , 5, 4974-80	16.7	85
79	Wedging graphite into graphene and graphene-like platelets by dendritic macromolecules. <i>Journal of Materials Chemistry</i> , 2011 , 21, 7820		24
78	Edge-functionalized graphene-like platelets as a co-curing agent and a nanoscale additive to epoxy resin. <i>Journal of Materials Chemistry</i> , 2011 , 21, 7337		76
77	Functionalization of Carbon Nanotubes 2011 ,		27
76	Electrochemical activity of a polyaniline/polyaniline-grafted multiwalled carbon nanotube mixture produced by a simple suspension polymerization. <i>Electrochimica Acta</i> , 2011 , 56, 10023-10031	6.7	21
75	Nanocomposite prepared from in situ grafting of polypyrrole to aminobenzoyl-functionalized multiwalled carbon nanotube and its electrochemical properties. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 2529-2537	2.5	31
74	Multifunctional conjugated polymers with main-chain donors and side-chain acceptors for dye sensitized solar cells (DSSCs) and organic photovoltaic cells (OPVs). <i>Macromolecular Rapid Communications</i> , 2011 , 32, 1809-14	4.8	16
73	Effect of Graphene Oxide on the Properties of Its Composite Fibers with PMMA and Nylon 6,6. Journal of the Korean Society for Composite Materials, 2011 , 24, 1-4		1
72	Highly Transparent and Conductive Graphene Electrode. <i>Advanced Materials Research</i> , 2010 , 123-125, 113-116	0.5	1
71	Exfoliation of Graphite via Edge-Functionalization with Carboxylic Acid-Terminated Hyperbranched Poly(ether-ketone)s. <i>Advanced Materials Research</i> , 2010 , 123-125, 671-674	0.5	3
70	Direct[grafting of linear macromolecular Wedges[to the edge of pristine graphite to prepare edge-functionalized graphene-based polymer composites. <i>Journal of Materials Chemistry</i> , 2010 , 20, 109	936	37
69	Nanocomposites Derived from Polymers and Inorganic Nanoparticles. <i>Materials</i> , 2010 , 3, 3654-3674	3.5	352
68	High-yield exfoliation of three-dimensional graphite into two-dimensional graphene-like sheets. <i>Chemical Communications</i> , 2010 , 46, 6320-2	5.8	97
67	Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. <i>ACS Nano</i> , 2010 , 4, 1321-6	16.7	3349
66	Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. <i>ACS Nano</i> , 2010 , 4, 5633-40	16.7	415
65	Sponge Behaviors of Functionalized Few-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 14868-14875	3.8	6

64	Efficient dispersion of singlewalled carbon nanotubes by novel amphiphilic dendrimers in water and substitution of the pre-adsorbed dendrimers with conventional surfactants and lipids. <i>Chemical Communications</i> , 2010 , 46, 7924-6	5.8	14
63	Edge-Functionalization of Pyrene as a Miniature Graphene via Friedel-Crafts Acylation Reaction in Poly(Phosphoric Acid). <i>Nanoscale Research Letters</i> , 2010 , 5, 1686-91	5	13
62	Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. <i>Materials Science and Engineering Reports</i> , 2010 , 70, 63-91	30.9	104
61	Processing, structure and properties of poly(ether ketone) grafted few wall carbon nanotube composite fibers. <i>Polymer</i> , 2010 , 51, 3940-3947	3.9	21
60	Nanocomposites based on vapor-grown carbon nanofibers and an epoxy: Functionalization, preparation and characterization. <i>European Polymer Journal</i> , 2010 , 46, 1404-1416	5.2	47
59	Multifunctional poly(2,5-benzimidazole)/carbon nanotube composite films. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 1067-1078	2.5	16
58	Synthesis and electrical properties of polyaniline/polyaniline grafted multiwalled carbon nanotube mixture via in situ static interfacial polymerization. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 1962-19	7 2 :5	27
57	Grafting of polyaniline onto the surface of 4-aminobenzoyl-functionalized multiwalled carbon nanotube and its electrochemical properties. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 3103-3112	2.5	33
56	Grafting of Polyaniline onto the Surface of Amino-Functionalized Multi-Walled Carbon Nanotube via Interfacial Polymerization. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1240, 1		О
55	Purification and Functionalization of Diamond Nanopowders. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1203, 1		
54	Synthesis and Characterization of Poly(2,5-benzimidazole) (ABPBI) Grafted Carbon Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1240, 1		1
53	In situ Polymerization of Multi-Walled Carbon Nanotube/Nylon-6 Nanocomposites and Their Electrospun Nanofibers. <i>Nanoscale Research Letters</i> , 2009 , 4, 39-46	5	52
52	Grafting of 4-(2,4,6-Trimethylphenoxy)benzoyl onto Single-Walled Carbon Nanotubes in Poly(phosphoric acid) via Amide Function. <i>Nanoscale Research Letters</i> , 2009 , 4, 766-72	5	10
51	Self-controlled synthesis of hyperbranched poly(ether-ketone)s from A2 + B3 approach in poly(phosphoric acid). <i>Journal of Polymer Science Part A</i> , 2009 , 47, 3326-3336	2.5	6
50	Carboxylic Acid-Terminated Hyperbranched Polybenzoxazole and Its Polyarm-Star Block Copolymers. <i>Macromolecules</i> , 2009 , 42, 1541-1553	5.5	5
49	Macromolecular dumbbells: synthesis and photophysical properties of hyperbranched poly(etherketone)-b-polybenzobisthiazole-b-hyperbranched poly(etherketone) ABA triblock copolymers. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4172		6
48	Semimetallic Transport in Nanocomposites Derived from Grafting of Linear and Hyperbranched Poly(phenylene sulfide)s onto the Surface of Functionalized Multi-Walled Carbon Nanotubes. <i>Macromolecules</i> , 2008 , 41, 7423-7432	5.5	55
47	Regioselective Chemical Modification of Fullerene by Destructive Electrophilic Reaction in Polyphosphoric Acid/Phosphorus Pentoxide. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12188-12194	3.8	14

(2006-2008)

46	Synthesis and Properties of Polyetherketone-block-Polybenzobisthiazole-block-Polyetherketone ABA Triblock Copolymers. <i>Macromolecules</i> , 2008 , 41, 1196-1205	5.5	11
45	Solubilization of Carbon Nanofibers with a Covalently Attached Hyperbranched Poly(ether ketone). <i>Chemistry of Materials</i> , 2008 , 20, 1502-1515	9.6	24
44	Nanocomposites derived from in situ grafting of linear and hyperbranched poly(ether-ketone)s containing flexible oxyethylene spacers onto the surface of multiwalled carbon nanotubes. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 3471-3481	2.5	38
43	Nylon 610/functionalized multiwalled carbon nanotube composite prepared from in-situ interfacial polymerization. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 6041-6050	2.5	26
42	Epoxy/amine-functionalized short-length vapor-grown carbon nanofiber composites. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 7473-7482	2.5	30
41	Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors. <i>Organic Electronics</i> , 2008 , 9, 317-322	3.5	61
40	One-pot purification and functionalization of single-walled carbon nanotubes in less-corrosive poly(phosphoric acid). <i>Carbon</i> , 2008 , 46, 1841-1849	10.4	33
39	Functionalization of multi-walled carbon nanotubes with various 4-substituted benzoic acids in mild polyphosphoric acid/phosphorous pentoxide. <i>Carbon</i> , 2008 , 46, 1850-1859	10.4	71
38	Poly(2,5-benzoxazole)/carbon nanotube composites via in situ polymerization of 3-amino-4-hydroxybenzoic acid hydrochloride in a mild poly(phosphoric acid). <i>European Polymer Journal</i> , 2008 , 44, 1603-1612	5.2	21
37	In-Situ Grafting of Hyperbranched Poly(ether ketone)s onto Multiwalled Carbon Nanotubes via the A3 + B2 Approach. <i>Macromolecules</i> , 2007 , 40, 4474-4480	5.5	44
36	In situ grafting of carboxylic acid-terminated hyperbranched poly(ether-ketone) to the surface of carbon nanotubes. <i>Polymer</i> , 2007 , 48, 4034-4040	3.9	46
35	Synthesis of linear and hyperbranched poly(etherketone)s containing flexible oxyethylene spacers. Journal of Polymer Science Part A, 2007, 45, 5112-5122	2.5	7
34	Nanocomposites Derived from a Low-Color Aromatic Polyimide (CP2) and Amine-Functionalized Vapor-Grown Carbon Nanofibers: In Situ Polymerization and Characterization. <i>Macromolecules</i> , 2007 , 40, 6100-6111	5.5	41
33	Multiwalled carbon nanotubes and nanofibers grafted with polyetherketones in mild and viscous polymeric acid. <i>Polymer</i> , 2006 , 47, 1132-1140	3.9	63
32	Synthesis and Chain-End Modification of a Novel Hyperbranched Polymer Containing Alternating Quinoxaline and Benzoxazole Repeat Units. <i>Macromolecules</i> , 2006 , 39, 7959-7966	5.5	15
31	Hyperbranched Poly(phenylquinoxaline@ther@etone) Synthesis in Poly(phosphoric acid)/P2O5Medium: ©Optimization and Some Interesting Observations. <i>Macromolecules</i> , 2006 , 39, 2794	-2 ⁵ 853	11
30	Self-Controlled Synthesis of Hyperbranched Poly(ether ketone)s from A3 + B2 Approach via Different Solubilities of Monomers in the Reaction Medium. <i>Macromolecules</i> , 2006 , 39, 9057-9063	5.5	31
29	Thermally reactive phenylethynyl-terminated bis(benzylester) and bis(amide) monomers based on semi-enzymatically produced 6-phenylethynyl picolinic acid. <i>Polymer</i> , 2006 , 47, 1197-1206	3.9	8

28	Modification of bisphenol-A based bismaleimide resin (BPA-BMI) with an allyl-terminated hyperbranched polyimide (AT-PAEKI). <i>Polymer</i> , 2006 , 47, 2813-2821	3.9	70
27	Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. <i>Polymer</i> , 2006 , 47, 8019-8025	3.9	159
26	Grafting of vapor-grown carbon nanofibers (VGCNF) with a hyperbranched poly(ether-ketone). <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2006 , 132, 103-107	3.1	19
25	Development of an improved synthetic route to an AB phenylquinoxaline monomer. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 801-814	2.5	9
24	Fluorine- and Hydroxyl-Terminated Hyperbranched Poly(phenylquinoxalines) (PPQs) from Copolymerization of Self-Polymerizable AB and AB2, BA, and BA2 Monomers. <i>Macromolecules</i> , 2005 , 38, 1131-1140	5.5	30
23	In Situ Synthesis of Poly(ethylene terephthalate) (PET) in Ethylene Glycol Containing Terephthalic Acid and Functionalized Multiwalled Carbon Nanotubes (MWNTs) as an Approach to MWNT/PET Nanocomposites. <i>Chemistry of Materials</i> , 2005 , 17, 5057-5064	9.6	163
22	Hyperbranched Polyphenylquinoxalines from Self-Polymerizable AB2 and A2B Monomers. <i>Macromolecules</i> , 2005 , 38, 297-306	5.5	29
21	Unusual thermal relaxation of viscosity-and-shear-induced strain in poly(ether-ketones) synthesized in highly viscous polyphosphoric acid/P2O5 medium. <i>Polymer</i> , 2005 , 46, 1543-1552	3.9	36
20	Synthesis and polymerization of new self-polymerizable quinoxaline monomers. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 78-91	2.5	12
19	Synthesis of phenylquinoxaline oligomers containing pendant electron-donating and electron-withdrawing groups. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 6465-6479	2.5	2
18	Synthesis and photoluminescence of linear and hyperbranched polyethers containing phenylquinoxaline units and flexible aliphatic spacers. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 3587	'- 3 603	16
17	Synthesis and thermal behavior of phenylethynyl-terminated linear and hyperbranched polyphenylquinoxalines. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 6318-6330	2.5	9
16	Grafting of Vapor-Grown Carbon Nanofibers via in-Situ Polycondensation of 3-Phenoxybenzoic Acid in Poly(phosphoric acid). <i>Macromolecules</i> , 2004 , 37, 8278-8285	5.5	80
15	Covalent modification of vapour-grown carbon nanofibers via direct Friedel Trafts acylation in polyphosphoric acid. <i>Journal of Materials Chemistry</i> , 2004 , 14, 2052-2056		79
14	Linear-hyperbranched copolymerization as a tool to modulate thermal properties and crystallinity of a para-poly(ether-ketone). <i>Polymer</i> , 2003 , 44, 3451-3459	3.9	26
13	Improved syntheses of poly(oxy-1,3-phenylenecarbonyl-1,4-phenylene) and related poly(etherRetones) using polyphosphoric acid/P2O5 as polymerization medium. <i>Polymer</i> , 2003 , 44, 413	5 ³ 4 ⁹ 147	, 52
12	Poly(arylether amides) and poly(aryletherketone amides) via aromatic nucleophilic substitution reactions of self-polymerizable AB and AB2 monomers. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 237	4 ² 2 ⁵ 389	
11	Room-Temperature Free-Radical-Induced Polymerization of 1,1E(Methylenedi-1,4-phenylene) bismaleimide via a Novel Diphenylquinoxaline-Containing Hyperbranched Aromatic Polyamide. <i>Macromolecules</i> , 2003 , 36, 4385-4396	5.5	14

LIST OF PUBLICATIONS

10	A New Hyperbranched Poly(arylene@ther@etone@mide): Synthesis, Chain-End Functionalization, and Blending with a Bis(maleimide). <i>Macromolecules</i> , 2002 , 35, 4951-4959	5.5	51
9	Thermal studies of blends of poly(phenylene sulfide) (PPS) with poly(phenylene sulfide sulfone) (PPSS) and with poly(phenylene sulfide ether) (PPSE). <i>Polymer Engineering and Science</i> , 1995 , 35, 1016-1	16231	11
8	Thermal behaviour of poly (phenylene sulfide) and its derivatives. <i>Polymer</i> , 1993 , 34, 2524-2527	3.9	31
7	Supercapacitors Based on Carbon Nanomaterials295-337		
6	High-Performance Polymer Solar Cells Containing Carbon Nanomaterials163-189		
5	Copper-assisted growth of high-purity carbon nanofiber networks with controllably tunable wettabilities. <i>Journal of Materials Chemistry A</i> ,	13	1
4	Benzothiazole-Based Covalent Organic Frameworks with Different Symmetrical Combinations for Photocatalytic CO2 Conversion. <i>Chemistry of Materials</i> ,	9.6	7
	1 Hotocatatytic CO2 Conversion. Chemistry of Materials,		<u> </u>
3	Graphene for Energy Solutions and its Printable Applications191-236		1
3		13	1