List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9472179/publications.pdf Version: 2024-02-01

Μικλει Ρνοδων

#	Article	IF	CITATIONS
1	β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. Journal of Clinical Investigation, 2022, 132, .	3.9	42
2	Glutamine Regulates Skeletal Muscle Immunometabolism in Type 2 Diabetes. Diabetes, 2022, 71, 624-636.	0.3	14
3	<i>Soat2</i> ties cholesterol metabolism to βâ€oxidation and glucose tolerance in male mice. Journal of Internal Medicine, 2022, 292, 296-307.	2.7	6
4	Human white adipose tissue: A highly dynamic metabolic organ. Journal of Internal Medicine, 2022, 291, 611-621.	2.7	26
5	The Lipid Droplet Knowledge Portal: A resource for systematic analyses of lipid droplet biology. Developmental Cell, 2022, 57, 387-397.e4.	3.1	22
6	Understanding the complexity of insulin resistance. Nature Reviews Endocrinology, 2022, , .	4.3	3
7	Insights from Studies of White Adipose Tissue Using Single-Cell Approaches. Handbook of Experimental Pharmacology, 2022, , 1.	0.9	0
8	Impaired phosphocreatine metabolism in white adipocytes promotes inflammation. Nature Metabolism, 2022, 4, 190-202.	5.1	21
9	Subcutaneous adipose tissue expansion mechanisms are similar in early and late onset overweight/obesity. International Journal of Obesity, 2022, 46, 1196-1203.	1.6	1
10	Lipolysis defect in people with obesity who undergo metabolic surgery. Journal of Internal Medicine, 2022, 292, 667-678.	2.7	3
11	Cellular senescence and its role in white adipose tissue. International Journal of Obesity, 2021, 45, 934-943.	1.6	38
12	Role of the Neutral Amino Acid Transporter SLC7A10 in Adipocyte Lipid Storage, Obesity, and Insulin Resistance. Diabetes, 2021, 70, 680-695.	0.3	21
13	Differential Mitochondrial Gene Expression in Adipose Tissue Following Weight Loss Induced by Diet or Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1312-1324.	1.8	13
14	Human White Adipose Tissue Displays Selective Insulin Resistance in the Obese State. Diabetes, 2021, 70, 1486-1497.	0.3	16
15	Diabetes and Metabolic Drivers of Trained Immunity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1284-1290.	1.1	13
16	In vitro and ex vivo models of adipocytes. American Journal of Physiology - Cell Physiology, 2021, 320, C822-C841.	2.1	65
17	Quantitative phosphoproteomic analysis of IRS1 in skeletal muscle from men with normal glucose tolerance or type 2 diabetes: A case-control study. Metabolism: Clinical and Experimental, 2021, 118, 154726.	1.5	5
18	Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis. Cell, 2021, 184, 3502-3518.e33.	13.5	68

#	Article	IF	CITATIONS
19	3D Adipose Tissue Culture Links the Organotypic Microenvironment to Improved Adipogenesis. Advanced Science, 2021, 8, e2100106.	5.6	37
20	A longitudinal study of the antilipolytic effect of insulin in women following bariatric surgery. International Journal of Obesity, 2021, 45, 2675-2678.	1.6	4
21	Hepatic miR-144 Drives Fumarase Activity Preventing NRF2 Activation During Obesity. Gastroenterology, 2021, 161, 1982-1997.e11.	0.6	34
22	Transforming growth factor β3 deficiency promotes defective lipid metabolism and fibrosis in murine kidney. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	11
23	Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metabolism, 2021, 33, 1869-1882.e6.	7.2	92
24	Impaired mRNA splicing and proteostasis in preadipocytes in obesity-related metabolic disease. ELife, 2021, 10, .	2.8	10
25	Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis. Circulation, 2021, 144, 961-982.	1.6	109
26	Disrupted circadian oscillations in type 2 diabetes are linked to altered rhythmic mitochondrial metabolism in skeletal muscle. Science Advances, 2021, 7, eabi9654.	4.7	44
27	Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. Nature, 2021, 599, 296-301.	13.7	36
28	Prospective analyses of white adipose tissue gene expression in relation to long-term body weight changes. International Journal of Obesity, 2020, 44, 377-387.	1.6	9
29	Glutamine Links Obesity to Inflammation in Human White Adipose Tissue. Cell Metabolism, 2020, 31, 375-390.e11.	7.2	128
30	Metabolic Impact of Body Fat Percentage Independent of Body Mass Index in Women with Obesity Remission After Gastric Bypass. Obesity Surgery, 2020, 30, 1086-1092.	1.1	9
31	Influence of Aging and Menstrual Status on Subcutaneous Fat Cell Lipolysis. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e955-e962.	1.8	12
32	Glutamine metabolism in adipocytes: a bona fide epigenetic modulator of inflammation. Adipocyte, 2020, 9, 620-625.	1.3	9
33	Circadian Rhythms in Hormone-sensitive Lipase in Human Adipose Tissue: Relationship to Meal Timing and Fasting Duration. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4407-e4416.	1.8	12
34	Novel aspects on the role of white adipose tissue in type 2 diabetes. Current Opinion in Pharmacology, 2020, 55, 47-52.	1.7	8
35	Usefulness of surrogate markers to determine insulin action in fat cells. International Journal of Obesity, 2020, 44, 2436-2443.	1.6	13
36	Longâ€ŧerm changes in adipose tissue gene expression following bariatric surgery. Journal of Internal Medicine, 2020, 288, 219-233.	2.7	20

#	Article	IF	CITATIONS
37	Age-Induced Reduction in Human Lipolysis: A Potential Role for Adipocyte Noradrenaline Degradation. Cell Metabolism, 2020, 32, 1-3.	7.2	42
38	Liver macrophages inhibit the endogenous antioxidant response in obesity-associated insulin resistance. Science Translational Medicine, 2020, 12, .	5.8	43
39	OBEDIS Core Variables Project: European Expert Guidelines on a Minimal Core Set of Variables to Include in Randomized, Controlled Clinical Trials of Obesity Interventions. Obesity Facts, 2020, 13, 1-28.	1.6	15
40	Improved metabolism and body composition beyond normal levels following gastric bypass surgery: a longitudinal study. Journal of Internal Medicine, 2019, 285, 92-101.	2.7	18
41	The imprinted gene Delta like non-canonical notch ligand 1 (Dlk1) associates with obesity and triggers insulin resistance through inhibition of skeletal muscle glucose uptake. EBioMedicine, 2019, 46, 368-380.	2.7	23
42	The Rho GTPase RND3 regulates adipocyte lipolysis. Metabolism: Clinical and Experimental, 2019, 101, 153999.	1.5	14
43	Adipose lipid turnover and long-term changes in body weight. Nature Medicine, 2019, 25, 1385-1389.	15.2	90
44	Human-Specific Function of IL-10 in Adipose Tissue Linked to Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4552-4562.	1.8	32
45	Open Randomized Multicenter Study to Evaluate Safety and Efficacy of Low Molecular Weight Sulfated Dextran in Islet Transplantation. Transplantation, 2019, 103, 630-637.	0.5	27
46	Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation. EBioMedicine, 2019, 44, 489-501.	2.7	29
47	Liver macrophages regulate systemic metabolism through non-inflammatory factors. Nature Metabolism, 2019, 1, 445-459.	5.1	72
48	Insulin action is severely impaired in adipocytes of apparently healthy overweight and obese subjects. Journal of Internal Medicine, 2019, 285, 578-588.	2.7	21
49	Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nature Metabolism, 2019, 1, 133-146.	5.1	42
50	Adipocyte Expression of SLC19A1 Links DNA Hypermethylation to Adipose Tissue Inflammation and Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 710-721.	1.8	29
51	FAM13A and POM121C are candidate genes for fasting insulin: functional follow-up analysis of a genome-wide association study. Diabetologia, 2018, 61, 1112-1123.	2.9	24
52	Bariatric surgery helps to reduce blood pressure - insights from GATEWAY trial. Cardiovascular Research, 2018, 114, e19-e21.	1.8	1
53	Screening of potential adipokines identifies S100A4 as a marker of pernicious adipose tissue and insulin resistance. International Journal of Obesity, 2018, 42, 2047-2056.	1.6	24
54	Natriuretic peptides promote glucose uptake in a cGMP-dependent manner in human adipocytes. Scientific Reports, 2018, 8, 1097.	1.6	33

#	Article	IF	CITATIONS
55	Long-Term Improvement in Aortic Pulse Wave Velocity After Weight Loss Can Be Predicted by White Adipose Tissue Factors. American Journal of Hypertension, 2018, 31, 450-457.	1.0	12
56	Long Non-Coding RNAs Associated with Metabolic Traits in Human White Adipose Tissue. EBioMedicine, 2018, 30, 248-260.	2.7	61
57	Body fat mass and distribution as predictors of metabolic outcome and weight loss after Roux-en-Y gastric bypass. Surgery for Obesity and Related Diseases, 2018, 14, 936-942.	1.0	13
58	MicroRNAs-361-5p and miR-574-5p associate with human adipose morphology and regulate EBF1 expression in white adipose tissue. Molecular and Cellular Endocrinology, 2018, 472, 50-56.	1.6	18
59	Family history of diabetes is associated with enhanced adipose lipolysis: Evidence for the implication of epigenetic factors. Diabetes and Metabolism, 2018, 44, 155-159.	1.4	16
60	Transforming Growth Factor-β3 Regulates Adipocyte Number in Subcutaneous White Adipose Tissue. Cell Reports, 2018, 25, 551-560.e5.	2.9	68
61	Weight Gain and Impaired Clucose Metabolism in Women Are Predicted by Inefficient Subcutaneous Fat Cell Lipolysis. Cell Metabolism, 2018, 28, 45-54.e3.	7.2	95
62	Transgenerational Epigenetic Mechanisms in Adipose Tissue Development. Trends in Endocrinology and Metabolism, 2018, 29, 675-685.	3.1	32
63	Mapping of biguanide transporters in human fat cells and their impact on lipolysis. Diabetes, Obesity and Metabolism, 2018, 20, 2416-2425.	2.2	12
64	Ex vivo Analysis of Lipolysis in Human Subcutaneous Adipose Tissue Explants. Bio-protocol, 2018, 8, e2711.	0.2	5
65	Omentectomy in Addition to Bariatric Surgery—a 5-Year Follow-up. Obesity Surgery, 2017, 27, 1115-1118.	1.1	26
66	The contribution of bone marrow-derived cells to the human adipocyte pool. Adipocyte, 2017, 6, 187-192.	1.3	11
67	Depot-specific differences in fatty acid composition and distinct associations with lipogenic gene expression in abdominal adipose tissue of obese women. International Journal of Obesity, 2017, 41, 1295-1298.	1.6	26
68	CD36 Is a Marker of Human Adipocyte Progenitors with Pronounced Adipogenic and Triglyceride Accumulation Potential. Stem Cells, 2017, 35, 1799-1814.	1.4	76
69	Abdominal subcutaneous adipose tissue cellularity in men and women. International Journal of Obesity, 2017, 41, 1564-1569.	1.6	30
70	Impact of fat mass and distribution on lipid turnover in human adipose tissue. Nature Communications, 2017, 8, 15253.	5.8	71
71	Repin1 deficiency in adipose tissue improves whole-body insulin sensitivity, and lipid metabolism. International Journal of Obesity, 2017, 41, 1815-1823.	1.6	11
72	Cardiovascular risk score is linked to subcutaneous adipocyte size and lipid metabolism. Journal of Internal Medicine, 2017, 282, 220-228.	2.7	28

#	Article	IF	CITATIONS
73	Subcutaneous Adipocyte Lipolysis Contributes to Circulating Lipid Levels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1782-1787.	1.1	61
74	Transcriptional Dynamics During Human Adipogenesis and Its Link to Adipose Morphology and Distribution. Diabetes, 2017, 66, 218-230.	0.3	27
75	Long-term Protective Changes in Adipose Tissue After Gastric Bypass. Diabetes Care, 2017, 40, 77-84.	4.3	64
76	Single cell transcriptomics suggest that human adipocyte progenitor cells constitute a homogeneous cell population. Stem Cell Research and Therapy, 2017, 8, 250.	2.4	53
77	On the origin of human adipocytes and the contribution of bone marrow-derived cells. Adipocyte, 2016, 5, 312-317.	1.3	3
78	Circulating and Adipose Levels of Adipokines Associated With Insulin Sensitivity in Nonobese Subjects With Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3765-3771.	1.8	18
79	Adipose and Circulating CCL18 Levels Associate With Metabolic Risk Factors in Women. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4021-4029.	1.8	32
80	An AMP-activated protein kinase–stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, 2016, 22, 1120-1130.	15.2	106
81	The Adipose Transcriptional Response to Insulin Is Determined by Obesity, Not Insulin Sensitivity. Cell Reports, 2016, 16, 2317-2326.	2.9	35
82	The epigenetic signature of systemic insulin resistance in obese women. Diabetologia, 2016, 59, 2393-2405.	2.9	62
83	Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness. Scientific Reports, 2016, 6, 28080.	1.6	42
84	Effects of selected bioactive food compounds on human white adipocyte function. Nutrition and Metabolism, 2016, 13, 4.	1.3	21
85	Numerous Genes in Loci Associated With Body Fat Distribution Are Linked to Adipose Function. Diabetes, 2016, 65, 433-437.	0.3	50
86	Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia, 2016, 59, 560-570.	2.9	163
87	Impaired atrial natriuretic peptide-mediated lipolysis in obesity. International Journal of Obesity, 2016, 40, 714-720.	1.6	52
88	The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women. Clinical Epigenetics, 2015, 7, 93.	1.8	54
89	<i>MFAP5</i> is related to obesity-associated adipose tissue and extracellular matrix remodeling and inflammation. Obesity, 2015, 23, 1371-1378.	1.5	35
90	Saturated fatty acids in human visceral adipose tissue are associated with increased 11- β-hydroxysteroid-dehydrogenase type 1 expression. Lipids in Health and Disease, 2015, 14, 42.	1.2	23

#	Article	IF	CITATIONS
91	Circulating Carnosine Dipeptidase 1 Associates with Weight Loss and Poor Prognosis in Gastrointestinal Cancer. PLoS ONE, 2015, 10, e0123566.	1.1	25
92	Adipose tissue morphology predicts improved insulin sensitivity following moderate or pronounced weight loss. International Journal of Obesity, 2015, 39, 893-898.	1.6	57
93	Low early B-cell factor 1 (EBF1) activity in human subcutaneous adipose tissue is linked to a pernicious metabolic profile. Diabetes and Metabolism, 2015, 41, 509-512.	1.4	4
94	Regional variations in the relationship between arterial stiffness and adipocyte volume or number in obese subjects. International Journal of Obesity, 2015, 39, 222-227.	1.6	28
95	Transplanted Bone Marrow-Derived Cells Contribute to Human Adipogenesis. Cell Metabolism, 2015, 22, 408-417.	7.2	75
96	Cidea improves the metabolic profile through expansion of adipose tissue. Nature Communications, 2015, 6, 7433.	5.8	80
97	The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. International Journal of Obesity, 2015, 39, 910-919.	1.6	85
98	Fatty Acids, Obesity and Insulin Resistance. Obesity Facts, 2015, 8, 147-155.	1.6	139
99	MicroRNA-193b Controls Adiponectin Production in Human White Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1084-E1088.	1.8	51
100	Ceruloplasmin Is a Novel Adipokine Which Is Overexpressed in Adipose Tissue of Obese Subjects and in Obesity-Associated Cancer Cells. PLoS ONE, 2014, 9, e80274.	1.1	50
101	Adipose Tissue and Metabolic Alterations: Regional Differences in Fat Cell Size and Number Matter, But Differently: A Cross-Sectional Study. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1870-E1876.	1.8	90
102	Changes in Subcutaneous Fat Cell Volume and Insulin Sensitivity After Weight Loss. Diabetes Care, 2014, 37, 1831-1836.	4.3	84
103	Early B Cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue. Cell Metabolism, 2014, 19, 981-992.	7.2	90
104	MicroRNAs Regulate Human Adipocyte Lipolysis: Effects of miR-145 Are Linked to TNF-α. PLoS ONE, 2014, 9, e86800.	1.1	84
105	Characterization of the Wnt Inhibitors Secreted Frizzled-Related Proteins (SFRPs) in Human Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E503-E508.	1.8	130
106	Adipocyte triglyceride turnover and lipolysis in lean and overweight subjects. Journal of Lipid Research, 2013, 54, 2909-2913.	2.0	55
107	Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity. Diabetes, 2012, 61, 1986-1993.	0.3	263
108	Adipose zincâ€î±2â€glycoprotein is a catabolic marker in cancer and noncancerous states. Journal of Internal Medicine, 2012, 271, 414-420.	2.7	30

#	Article	IF	CITATIONS
109	Dynamics of human adipose lipid turnover in health and metabolic disease. Nature, 2011, 478, 110-113.	13.7	319
110	Regulation of Lipolysis in Small and Large Fat Cells of the Same Subject. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E2045-E2049.	1.8	110
111	Dipeptidyl Peptidase 4 Is a Novel Adipokine Potentially Linking Obesity to the Metabolic Syndrome. Diabetes, 2011, 60, 1917-1925.	0.3	506
112	Regional impact of adipose tissue morphology on the metabolic profile in morbid obesity. Diabetologia, 2010, 53, 2496-2503.	2.9	190
113	Role of Receptor-Interacting Protein 140 in human fat cells. BMC Endocrine Disorders, 2010, 10, 1.	0.9	19
114	Tumor Necrosis Factor α and Regulation of Adipose Tissue. New England Journal of Medicine, 2010, 362, 1151-1153.	13.9	48
115	Adipocyte Turnover: Relevance to Human Adipose Tissue Morphology. Diabetes, 2010, 59, 105-109.	0.3	490
116	Activation of Liver X Receptor Regulates Substrate Oxidation in White Adipocytes. Endocrinology, 2009, 150, 4104-4113.	1.4	43
117	Fibroblast growth factor 21: an overview from a clinical perspective. Cellular and Molecular Life Sciences, 2009, 66, 2067-2073.	2.4	39
118	Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Lipolysis in hMADS Adipocytes. Journal of Biological Chemistry, 2009, 284, 18282-18291.	1.6	177
119	Lipolysis—Not inflammation, cell death, or lipogenesis—Is involved in adipose tissue loss in cancer cachexia. Cancer, 2008, 113, 1695-1704.	2.0	140
120	Dynamics of fat cell turnover in humans. Nature, 2008, 453, 783-787.	13.7	1,914
121	Vascular Peptide Endothelin-1 Links Fat Accumulation With Alterations of Visceral Adipocyte Lipolysis. Diabetes, 2008, 57, 378-386.	0.3	77
122	Comparative studies of the role of hormone-sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1847-E1855.	1.8	110
123	Mechanism of Increased Lipolysis in Cancer Cachexia. Cancer Research, 2007, 67, 5531-5537.	0.4	239
124	Tumour necrosis factor-? in human adipose tissue ? from signalling mechanisms to clinical implications. Journal of Internal Medicine, 2007, 262, 431-438.	2.7	99
125	Fat loss in cachexia—is there a role for adipocyte lipolysis?. Clinical Nutrition, 2007, 26, 1-6.	2.3	72
126	Adipocyte Lipases and Defect of Lipolysis in Human Obesity. Diabetes, 2005, 54, 3190-3197.	0.3	329

#	Article	IF	CITATIONS
127	Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Experimental Cell Research, 2005, 308, 283-290.	1.2	279
128	Effect of testosterone on lipolysis in human pre-adipocytes from different fat depots. Diabetologia, 2004, 47, 420-428.	2.9	140
129	Targets for TNF-Î \pm -induced lipolysis in human adipocytes. Biochemical and Biophysical Research Communications, 2004, 318, 168-175.	1.0	165
130	Functional characterization of human mesenchymal stem cell-derived adipocytes. Biochemical and Biophysical Research Communications, 2003, 311, 391-397.	1.0	119
131	Mapping of Early Signaling Events in Tumor Necrosis Factor-α-mediated Lipolysis in Human Fat Cells. Journal of Biological Chemistry, 2002, 277, 1085-1091.	1.6	213
132	Effect of the (C825T) GÂ3 Polymorphism on Adrenoceptor-Mediated Lipolysis in Human Fat Cells. Diabetes, 2002, 51, 1601-1608.	0.3	63
133	Effects of obesity and weight loss on the expression of proteins involved in fatty acid metabolism in human adipose tissue. International Journal of Obesity, 2002, 26, 1379-1385.	1.6	37
134	Increased expression of eNOS protein in omental versus subcutaneous adipose tissue in obese human subjects. International Journal of Obesity, 2001, 25, 811-815.	1.6	37
135	The Arg 389 Gly β1-adrenergic receptor gene polymorphism and human fat cell lipolysis. International Journal of Obesity, 2001, 25, 1599-1603.	1.6	32