Claudio Cameselle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9472158/publications.pdf

Version: 2024-02-01

172386 189801 3,067 113 29 50 citations h-index g-index papers 131 131 131 2189 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrokinetic-assisted phytoremediation of heavy metal contaminated soil: Present status, challenges, and opportunities., 2022,, 537-555.		1
2	Wastewater and marine bioindicators surveillance to anticipate COVID-19 prevalence and to explore SARS-CoV-2 diversity by next generation sequencing: One-year study. Science of the Total Environment, 2022, 833, 155140.	3.9	13
3	Cost-effective ecofriendly nanoparticles for rapid and efficient indigo carmine dye removal from wastewater: Adsorption equilibrium, kinetics and mechanism. Environmental Technology and Innovation, 2022, 28, 102595.	3.0	24
4	Enhanced removal of Thiamethoxam from wastewater using waste-derived nanoparticles: Adsorption performance and mechanisms. Environmental Technology and Innovation, 2022, 28, 102713.	3.0	11
5	Enhanced removal of Indigo Carmine dye from textile effluent using green cost-efficient nanomaterial: Adsorption, kinetics, thermodynamics and mechanisms. Sustainable Chemistry and Pharmacy, 2022, 29, 100753.	1.6	22
6	Removal of the pesticides from soil using electrokinetic method. Rendiconti Lincei, 2022, 33, 623-629.	1.0	1
7	Mixed versus layered multi-media filter for simultaneous removal of nutrients and heavy metals from urban stormwater runoff. Environmental Science and Pollution Research, 2021, 28, 7574-7585.	2.7	9
8	Scientometric study of drinking water treatments technologies: Present and future challenges. Cogent Engineering, $2021, 8, .$	1.1	11
9	Enhanced Electrokinetic Remediation for the Removal of Heavy Metals from Contaminated Soils. Applied Sciences (Switzerland), 2021, 11, 1799.	1.3	27
10	Sustainable Phytoremediation of Soils Enhanced with Electric Field. International Journal of Geosynthetics and Ground Engineering, 2021, 7, 1.	0.9	3
11	Electrokinetic Soil Flushing. Environmental Pollution, 2021, , 111-132.	0.4	O
12	Toward a social construction of water resources management: The case of Kalimantan. Cogent Engineering, 2021, 8, .	1.1	O
13	Removal of Multiple Metallic Species from Sludge by Electromigration. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, 04019030.	1.2	7
14	Removal Kinetics of Heavy Metals and Nutrients from Stormwater by Different Filter Materials. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	3
15	Methodology for locating regional landfills using multi-criteria decision analysis techniques. Cogent Engineering, 2020, 7, 1776451.	1.1	9
16	Effects of Ectomycorrhizal Fungi and Heavy Metals (Pb, Zn, and Cd) on Growth and Mineral Nutrition of Pinus halepensis Seedlings in North Africa. Microorganisms, 2020, 8, 2033.	1.6	26
17	Passive environmental design of an eco-house in the hot-humid climate of the Middle East: A qualitative approach. Cogent Engineering, 2020, 7, 1837410.	1.1	1
18	Monitoring of radon concentration for different building types in Covenant University, Nigeria. Cogent Engineering, 2020, 7, 1759396.	1.1	12

#	Article	IF	Citations
19	EREM 2018: Sustainable electrokinetic and electrochemical environmental applications. Chemosphere, 2020, 259, 127377.	4.2	O
20	Analysis and Optimization of Mn Removal from Contaminated Solid Matrixes by Electrokinetic Remediation. International Journal of Environmental Research and Public Health, 2020, 17, 1820.	1.2	7
21	Evaluation of simultaneous incidence of head space and temperature on biochemical methane potential in food waste. Cogent Engineering, 2020, 7, 1729514.	1.1	18
22	Bioremediation of artificially contaminated soil with petroleum using animal waste: cow and poultry dung. Cogent Engineering, 2020, 7, 1721409.	1.1	14
23	Removing fluoride from hot spring wastewater by an electrolysis system with a perforated plate as a diaphragm. Cogent Engineering, 2020, 7, 1720061.	1.1	0
24	Phytoremediation of mixed contaminated soil enhanced with electric current. Journal of Hazardous Materials, 2019, 361, 95-102.	6.5	102
25	Sustainable Soil Remediation. Phytoremediation Amended with Electric Current. Lecture Notes in Civil Engineering, 2019, , 51-61.	0.3	6
26	Benefits of phytoremediation amended with DC electric field. Application to soils contaminated with heavy metals. Chemosphere, 2019, 229, 481-488.	4.2	48
27	The gasoline fuel quality impact on fuel consumption, air-fuel ratio (AFR), lambda (\hat{l} ») and exhaust emissions of gasoline-fueled vehicles. Cogent Engineering, 2019, 6, .	1.1	9
28	Opportunities of electrokinetics for the remediation of mining sites in Biga peninsula, Turkey. Chemosphere, 2019, 227, 606-613.	4.2	22
29	Transport infectious substances category a as a high consequence dangerous goods with the potential for misuse in a terrorist event. International Journal of Infectious Diseases, 2019, 79, 54-55.	1.5	1
30	Experimental study on premixed flame combustion of annular burner with CO ₂ dilution based on OH-PLIF technology. Cogent Engineering, 2019, 6, .	1.1	0
31	Investigation and Quantification of Carbon Footprint in Lagos Megacity. Cogent Engineering, 2019, 6, .	1.1	3
32	Physicochemical Methods for the Remediation of Radionuclide Contaminated Sites., 2019,, 31-49.		1
33	Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation. Reviews in Environmental Science and Biotechnology, 2018, 17, 205-228.	3.9	101
34	Study on the laminar burning velocity of Medium-Btu syngas flame with N ₂ dilution based on OH-PLIF technology. Cogent Engineering, 2018, 5, 1536306.	1.1	1
35	Electrokinetic remediation for the removal of organic contaminants in soils. Current Opinion in Electrochemistry, 2018, 11, 41-47.	2.5	77
36	Electrokinetic – Enhanced ryegrass cultures in soils polluted with organic and inorganic compounds. Environmental Research, 2017, 158, 118-125.	3.7	51

3

#	Article	IF	Citations
37	Acid pond sediment and mine tailings contaminated with metals: physicochemical characterization and electrokinetic remediation. Environmental Earth Sciences, 2017, 76, 1.	1.3	27
38	Electrokinetic treatment of an agricultural soil contaminated with heavy metals. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 691-700.	0.9	49
39	Characterization of Heavy Metals in Mine Tailings and Lake Sediments: Implications on Remediation. , 2016, , .		1
40	Removal of heavy metals from contaminated soil by electrodialytic remediation enhanced with organic acids. Environmental Sciences: Processes and Impacts, 2016, 18, 1440-1448.	1.7	20
41	Electrokinetic Removal of Heavy Metals from Mine Tailings and Acid Lake Sediments from Can Basin, Turkey. , 2016, , .		7
42	Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals. Chemical Engineering Research and Design, 2016, 104, 209-217.	2.7	86
43	Studies on the Removal Behaviour of Hydrophilic and Hydrophobic Dyes from Organic Contaminated Kaolinite Soil by an Electrokinetic Remediation System. , $2016, \ldots$		0
44	Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Reviews in Environmental Science and Biotechnology, 2016, 15, 299-326.	3.9	114
45	Electrokinetic remediation and other physico-chemical remediation techniques for in situ treatment of soil from contaminated nuclear and NORM sites. , 2015, , 161-184.		6
46	Electrokinetic Amendment in Phytoremediation of Mixed Contaminated Soil. Electrochimica Acta, 2015, 181, 179-191.	2.6	90
47	Enhancement Of Electro-Osmotic Flow During The Electrokinetic Treatment Of A Contaminated Soil. Electrochimica Acta, 2015, 181, 31-38.	2.6	104
48	ENHANCED ELECTROKINETIC REMEDIATION OF HYDROPHOBIC ORGANICS CONTAMINATED SOILS BY THE COMBINATION OF NON-IONIC AND IONIC SURFACTANTS. Electrochimica Acta, 2015, 174, 1057-1066.	2.6	80
49	Physico-chemical effects of ion-exchange fibers on electrokinetic transportation of metal ions. Separation and Purification Technology, 2014, 135, 72-79.	3.9	3
50	Electrokinetic Transport in Soil Remediation., 2014,, 725-731.		0
51	Electrokinetics in the Removal of Chlorinated Organics from Soils. , 2014, , 731-738.		1
52	Effects of Periodic Electric Potential and Electrolyte Recirculation on Electrochemical Remediation of Contaminant Mixtures in Clayey Soils. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	30
53	Biosorption of lead from acidic aqueous solutions using Durvillaea antarctica as adsorbent. Minerals Engineering, 2013, 46-47, 95-99.	1.8	5
54	Electro-remediation of copper mine tailings. Comparing copper removal efficiencies for two tailings of different age. Minerals Engineering, 2013, 41, 1-8.	1.8	20

#	Article	IF	Citations
55	Electrokinetic-enhanced phytoremediation of soils: Status and opportunities. Chemosphere, 2013, 93, 626-636.	4.2	166
56	Effect of Dispersant on Transport of Nanoscale Iron Particles in Soils: Zeta Potential Measurements and Column Experiments. Journal of Environmental Engineering, ASCE, 2013, 139, 23-33.	0.7	14
57	Electroremediation of contaminated soil by heavy metals using ion exchange fibers. Electrochimica Acta, 2012, 86, 138-141.	2.6	14
58	Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochimica Acta, 2012, 86, 10-22.	2.6	125
59	Electrokinetic-enhanced transport of lactate-modified nanoscale iron particles for degradation of dinitrotoluene in clayey soils. Separation and Purification Technology, 2011, 79, 230-237.	3.9	48
60	Integrated electrokinetic-soil flushing to remove mixed organic and metal contaminants. Journal of Applied Electrochemistry, 2010, 40, 1269-1279.	1.5	39
61	Sequential Electrokinetic Remediation of Mixed Contaminants in Low Permeability Soils. Journal of Environmental Engineering, ASCE, 2009, 135, 989-998.	0.7	58
62	Surfactant-enhanced Electrokinetic Remediation of Mixed Contamination in Low Permeability Soil. Separation Science and Technology, 2009, 44, 2385-2409.	1.3	74
63	Evaluation of Electrokinetic Technique for Industrial Waste Decontamination. Separation Science and Technology, 2009, 44, 2304-2321.	1.3	29
64	Electrochemical remediation of phenanthrene from contaminated kaolinite. Environmental Geochemistry and Health, 2008, 30, 89-94.	1.8	29
65	Removal of organic pollutants and heavy metals in soils by electrokinetic remediation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 871-875.	0.9	23
66	Electromigration of Mn, Fe, Cu and Zn with citric acid in contaminated clay. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 823-831.	0.9	21
67	Remediation of phenanthrene from contaminated kaolinite by electroremediation-Fenton technology. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 901-906.	0.9	28
68	Remediation of Dye-Polluted Kaolinite by Combination of Electrokinetic Remediation and Electrochemical Treatment. Environmental Engineering Science, 2008, 25, 419-428.	0.8	20
69	Improving on electrokinetic remediation in spiked Mn kaolinite by addition of complexing agents. Electrochimica Acta, 2007, 52, 3349-3354.	2.6	52
70	Enhanced electrokinetic remediation of polluted kaolinite with an azo dye. Electrochimica Acta, 2007, 52, 3393-3398.	2.6	30
71	Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere, 2006, 62, 817-822.	4.2	79
72	Decolourisation of textile indigo dye by DC electric current. Engineering Geology, 2005, 77, 253-261.	2.9	34

#	Article	IF	Citations
73	Electrochemical Treatment of a Polluted Sludge: Different Methods and Conditions for Manganese Removal. Separation Science and Technology, 2005, 39, 3679-3689.	1.3	21
74	Selection of an electrolyte to enhance the electrochemical decolourisation of indigo. Optimisation and scale-up. Chemosphere, 2005, 60, 1080-1086.	4.2	59
75	Optimisation of electrochemical decolourisation process of an azo dye, Methyl Orange. Journal of Chemical Technology and Biotechnology, 2004, 79, 1349-1353.	1.6	33
76	Electrochemical decolourisation of structurally different dyes. Chemosphere, 2004, 57, 233-239.	4.2	135
77	Enhanced decolourisation ability of laccase towards various synthetic dyes by an electrocatalysis technology. Biotechnology Letters, 2003, 25, 603-606.	1.1	8
78	Title is missing!. World Journal of Microbiology and Biotechnology, 2003, 19, 665-669.	1.7	64
79	Iron removal from kaolin. Comparison between "in situ―and "two-stage―bioleaching processes. Hydrometallurgy, 2003, 68, 97-105.	1.8	52
80	Study of the degradation of dyes by MnP of Phanerochaete chrysosporium produced in a fixed-bed bioreactor. Chemosphere, 2003, 51, 295-303.	4.2	59
81	Ligninolytic enzymes from corncob cultures ofPhanerochaete chrysosporiumunder semi-solid-state conditions. Acta Biotechnologica, 1999, 19, 17-25.	1.0	21
82	Manganese Removal from Spiked Kaolinitic Soil and Sludge by Electromigration. Separation Science and Technology, 1999, 34, 3227-3241.	1.3	35
83	Production of manganese peroxidase and laccase in laboratory-scale bioreactors by. Bioprocess and Biosystems Engineering, 1999, 20, 531.	0.5	8
84	Influence of milk whey, nitrogen and phosphorus concentration on oxalic acid production by. Bioprocess and Biosystems Engineering, 1999, 20, 1.	0.5	1
85	Influence of some inducers on activity of ligninolytic enzymes from corncob cultures of Phanerochaete chrysosporium in semi-solid-state conditions. Progress in Biotechnology, 1998, , 703-708.	0.2	3
86	Oxalic acid production by. Bioprocess and Biosystems Engineering, 1998, 19, 247.	0.5	22
87	Effect of the different parts of the corn cob employed as a carrier on ligninolytic activity in solid state cultures by. Bioprocess and Biosystems Engineering, 1998, 18, 251.	0.5	O
88	Oxalic acid production by. Bioprocess and Biosystems Engineering, 1998, 19, 337.	0.5	0
89	Laccase production in semi-solid cultures of Phanerochaete chrysosporium. Biotechnology Letters, 1997, 19, 995-998.	1.1	27
90	Leaching of kaolin iron-oxides with organic acids. Journal of Chemical Technology and Biotechnology, 1997, 70, 349-354.	1.6	16

#	Article	IF	CITATIONS
91	Leaching of iron from kaolins by a spent fermentation liquor: Influence of temperature, pH, agitation and citric acid concentration. Journal of Industrial Microbiology, 1995, 14, 288-292.	0.9	14
92	Continuous ethanolic fermentation by Saccharomyces cerevisiae immobilised in Ca-alginate beads hardened with Al3+. Biotechnology Letters, 1995, 9, 815-820.	0.5	6
93	Electrokinetic Removal of Nitrate and Fluoride. , 0, , 141-148.		2
94	Electrokinetic Removal of PAHs., 0,, 195-217.		4
95	Electrokinetic Removal of Chlorinated Organic Compounds. , 0, , 219-234.		6
96	Electrokinetic Transport of Chlorinated Organic Pesticides. , 0, , 235-248.		2
97	Electrokinetic Removal of Herbicides from Soils. , 0, , 249-264.		O
98	Electrokinetic Barriers for Preventing Groundwater Pollution. , 0, , 333-356.		2
99	Electrokinetic Biofences. , 0, , 357-366.		6
100	Electrosynthesis of Oxidants and Their Electrokinetic Distribution. , 0, , 473-482.		0
101	Coupled Electrokinetic–Permeable Reactive Barriers. , 0, , 483-503.		7
102	Electrokinetic Modeling of Heavy Metals., 0,, 537-562.		2
103	Electrokinetic Barriers: Modeling and Validation. , 0, , 563-579.		1
104	Cost Estimates for Electrokinetic Remediation., 0,, 581-587.		2
105	Regulatory Aspects of Implementing Electrokinetic Remediation. , 0, , 589-606.		O
106	Field Applications of Electrokinetic Remediation of Soils Contaminated with Heavy Metals. , 0, , 607-624.		3
107	Field Studies on Sediment Remediation. , 0, , 661-696.		3
108	Experiences With Field Applications of Electrokinetic Remediation., 0,, 697-717.		6

#	Article	IF	CITATIONS
109	Low-cost biosorbents from pines wastes for heavy metals removal from wastewater: adsorption/desorption studies., 0, 225, 430-442.		2
110	Overview of Electrochemical Remediation Technologies. , 0, , 1-28.		18
111	Influence of Coupled Electrokinetic–Phytoremediation on Soil Remediation. , 0, , 417-437.		8
112	Electrokinetic Removal of Radionuclides. , 0, , 127-139.		6
113	Electrokinetic Stabilization of Chromium (VI)-Contaminated Soils. , 0, , 179-193.		1