
Vincent O'Flaherty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9472149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochemistry, 1998, 33, 555-569.	3.7	253
2	Bioremediation of olive mill wastewater. International Biodeterioration and Biodegradation, 2008, 61, 127-134.	3.9	190
3	Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiology Letters, 2003, 219, 297-304.	1.8	158
4	DNA extraction method affects microbial community profiles from soils and sediment. Applied Microbiology and Biotechnology, 2007, 77, 955-964.	3.6	152
5	Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters. Water Research, 2009, 43, 157-165.	11.3	141
6	Denitrification potential in subsoils: A mechanism to reduce nitrate leaching to groundwater. Agriculture, Ecosystems and Environment, 2012, 147, 13-23.	5.3	139
7	Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system. Biotechnology for Biofuels, 2018, 11, 108.	6.2	126
8	Microbial community structure and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters. FEMS Microbiology Ecology, 2003, 46, 159-170.	2.7	107
9	Low-temperature anaerobic digestion for wastewater treatment. Current Opinion in Biotechnology, 2012, 23, 444-451.	6.6	106
10	Development of microbial community structure and actvity in a high-rate anaerobic bioreactor at 18ŰC. Water Research, 2006, 40, 1009-1017.	11.3	101
11	LONG-TERM COMPETITION BETWEEN SULPHATE-REDUCING AND METHANE-PRODUCING BACTERIA DURING FULL-SCALE ANAEROBIC TREATMENT OF CITRIC ACID PRODUCTION WASTEWATER. Water Research, 1998, 32, 815-825.	11.3	100
12	Psychrophilic and mesophilic anaerobic digestion of brewery effluent: A comparative study. Water Research, 2006, 40, 2503-2510.	11.3	99
13	Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater. Bioelectrochemistry, 2012, 87, 164-171.	4.6	99
14	Anaerobic Granular Sludge Bioreactor Technology. Reviews in Environmental Science and Biotechnology, 2003, 2, 225-245.	8.1	97
15	Long-Term Persistence and Leaching of <i>Escherichia coli</i> in Temperate Maritime Soils. Applied and Environmental Microbiology, 2010, 76, 1449-1455.	3.1	97
16	Psychrophilic methanogenic community development during long-term cultivation of anaerobic granular biofilms. ISME Journal, 2009, 3, 1231-1242.	9.8	96
17	Long-term, high-rate anaerobic biological treatment of whey wastewaters at psychrophilic temperatures. Bioresource Technology, 2006, 97, 1669-1678.	9.6	92
18	Combined Stochastic and Deterministic Processes Drive Community Assembly of Anaerobic Microbiomes During Granule Flotation. Frontiers in Microbiology, 2021, 12, 666584.	3.5	91

#	Article	IF	CITATIONS
19	Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors. Water Research, 2004, 38, 619-630.	11.3	88
20	Quantitative and qualitative analyses of methanogenic community development in high-rate anaerobic bioreactors. Water Research, 2011, 45, 1298-1308.	11.3	87
21	Concentration of Norovirus during Wastewater Treatment and Its Impact on Oyster Contamination. Applied and Environmental Microbiology, 2012, 78, 3400-3406.	3.1	86
22	The Microbiology and Biochemistry of Anaerobic Bioreactors with Relevance to Domestic Sewage Treatment. Reviews in Environmental Science and Biotechnology, 2006, 5, 39-55.	8.1	75
23	Long-term (1243 days), low-temperature (4–15°C), anaerobic biotreatment of acidified wastewaters: Bioprocess performance and physiological characteristics. Water Research, 2009, 43, 1611-1620.	11.3	74
24	Quantitative and qualitative analysis of methanogenic communities in mesophilically and psychrophilically cultivated anaerobic granular biofilims. Water Research, 2009, 43, 3365-3374.	11.3	74
25	Low-temperature anaerobic biological treatment of solvent-containing pharmaceutical wastewater. Water Research, 2005, 39, 4587-4596.	11.3	73
26	A metaproteomic approach gives functional insights into anaerobic digestion. Journal of Applied Microbiology, 2011, 110, 1550-1560.	3.1	72
27	Anaerobic biological treatment of phenolic wastewater at 15–18°C. Water Research, 2005, 39, 1614-1620.	11.3	70
28	Distribution of extracellular polysaccharides and flotation of anaerobic sludge. Applied Microbiology and Biotechnology, 1996, 46, 197-201.	3.6	68
29	Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass. Applied Microbiology and Biotechnology, 2014, 98, 611-620.	3.6	68
30	Development of a pathogen transport model for Irish catchments using SWAT. Agricultural Water Management, 2010, 97, 101-111.	5.6	67
31	Anaerobic digestion of agricultural manure and biomass – Critical indicators of risk and knowledge gaps. Science of the Total Environment, 2019, 690, 460-479.	8.0	67
32	Anaerobic treatment of 2,4,6-trichlorophenol in an expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactor at 15 Ã,°C. FEMS Microbiology Ecology, 2005, 53, 167-178.	2.7	65
33	Charge Transport through <i>Geobacter sulfurreducens</i> Biofilms Grown on Graphite Rods. Langmuir, 2012, 28, 7904-7913.	3.5	62
34	Anaerobic biological treatment of phenol at 9.5–15°C in an expanded granular sludge bed (ECSB)-based bioreactor. Water Research, 2006, 40, 3737-3744.	11.3	61
35	Characterization of Environmentally Persistent <i>Escherichia coli</i> Isolates Leached from an Irish Soil. Applied and Environmental Microbiology, 2010, 76, 2175-2180.	3.1	61
36	Effect of sulphate addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor. II: microbial interactions and toxic effects. Bioresource Technology, 1999, 68, 109-120.	9.6	60

#	Article	IF	CITATIONS
37	Effect of sulphate addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor. I: process disturbance and remediation. Bioresource Technology, 1999, 68, 101-107.	9.6	59
38	Bioaugmentation of UASB reactors with immobilized Sulfurospirillum barnesii for simultaneous selenate and nitrate removal. Applied Microbiology and Biotechnology, 2009, 83, 377-388.	3.6	59
39	Effect of feed composition and upflow velocity on aggregate characteristics in anaerobic upflow reactors. Applied Microbiology and Biotechnology, 1997, 47, 102-107.	3.6	58
40	Pervaporation separation of butyric acid from aqueous and anaerobic digestion (AD) solutions using PEBA based composite membranes. Journal of Industrial and Engineering Chemistry, 2015, 23, 163-170.	5.8	57
41	Reactor configuration influences microbial community structure during high-rate, low-temperature anaerobic treatment of dairy wastewater. Bioresource Technology, 2020, 307, 123221.	9.6	57
42	Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass. Frontiers in Microbiology, 2018, 9, 540.	3.5	56
43	Influence of stormflow and baseflow phosphorus pressures on stream ecology in agricultural catchments. Science of the Total Environment, 2017, 590-591, 469-483.	8.0	55
44	Temperature dependent (37–15°C) anaerobic digestion of a trichloroethylene-contaminated wastewater. Bioresource Technology, 2011, 102, 7645-7656.	9.6	52
45	Modeling of Pathogen Indicator Organisms in a Small-Scale Agricultural Catchment Using SWAT. Human and Ecological Risk Assessment (HERA), 2013, 19, 232-253.	3.4	52
46	Quantitative and qualitative transitions of methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater. Applied Microbiology and Biotechnology, 2010, 87, 1963-1973.	3.6	51
47	Norovirus Genotypes Present in Oysters and in Effluent from a Wastewater Treatment Plant during the Seasonal Peak of Infections in Ireland in 2010. Applied and Environmental Microbiology, 2013, 79, 2578-2587.	3.1	50
48	Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater. Biodegradation, 1998, 9, 233-245.	3.0	49
49	Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16–37 Ã,°C. FEMS Microbiology Ecology, 2004, 48, 369-378.	2.7	49
50	Transforming soil phosphorus fertility management strategies to support the delivery of multiple ecosystem services from agricultural systems. Science of the Total Environment, 2019, 649, 90-98.	8.0	48
51	Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. Journal of Biotechnology, 2022, 348, 10-25.	3.8	48
52	Effect of seed sludge and operation conditions on performance and archaeal community structure of low-temperature anaerobic solvent-degrading bioreactors. Systematic and Applied Microbiology, 2009, 32, 65-79.	2.8	47
53	Ranking hazards pertaining to human health concerns from land application of anaerobic digestate. Science of the Total Environment, 2020, 710, 136297.	8.0	47
54	Low-temperature (7°C) anaerobic treatment of a trichloroethylene-contaminated wastewater: Microbial community development. Water Research, 2011, 45, 4035-4046.	11.3	46

#	Article	IF	CITATIONS
55	Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater. Frontiers in Microbiology, 2016, 7, 226.	3.5	45
56	Distribution, Localization, and Phylogeny of Abundant Populations of Crenarchaeota in Anaerobic Granular Sludge. Applied and Environmental Microbiology, 2005, 71, 7523-7527.	3.1	44
57	Microbial Exposure Assessment of Waterborne Pathogens. Human and Ecological Risk Assessment (HERA), 2007, 13, 1313-1351.	3.4	42
58	Optimisation of protein extraction and $2\hat{a}\in DE$ for metaproteomics of microbial communities from anaerobic wastewater treatment biofilms. Electrophoresis, 2009, 30, 4149-4151.	2.4	42
59	Microbial community structure and dynamics in anaerobic fluidizedâ€bed and granular sludgeâ€bed reactors: influence of operational temperature and reactor configuration. Microbial Biotechnology, 2012, 5, 738-752.	4.2	41
60	Norovirus and FRNA bacteriophage determined by RT-qPCR and infectious FRNA bacteriophage in wastewater and oysters. Water Research, 2013, 47, 5222-5231.	11.3	41
61	Microbial and microfaunal communities in phosphorus limited, grazed grassland change composition but maintain homeostatic nutrient stoichiometry. Soil Biology and Biochemistry, 2014, 75, 94-101.	8.8	41
62	Low-temperature anaerobic biological treatment of toluene-containing wastewater. Water Research, 2007, 41, 1465-1472.	11.3	40
63	Low-Temperature (10°C) Anaerobic Digestion of Dilute Dairy Wastewater in an EGSB Bioreactor: Microbial Community Structure, Population Dynamics, and Kinetics of Methanogenic Populations. Archaea, 2013, 2013, 1-10.	2.3	39
64	Accessing the Black Box of Microbial Diversity and Ecophysiology: Recent Advances Through Polyphasic Experiments. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 897-922.	1.7	38
65	A comparison of molecular methods for monitoring soil nematodes and their use as biological indicators. European Journal of Soil Biology, 2010, 46, 319-324.	3.2	38
66	Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors. Biodegradation, 2008, 19, 725-737.	3.0	37
67	Microbial community dynamics associated with biomass granulation in low-temperature (15°C) anaerobic wastewater treatment bioreactors. Bioresource Technology, 2010, 101, 6336-6344.	9.6	37
68	Granular biofilm-based anaerobic digestion: molecular biomonitoring and high-rate psychrophilic treatment of phenolic wastewater. Water Science and Technology, 2007, 55, 43-49.	2.5	36
69	Acidification of methanol-fed anaerobic granular sludge bioreactors by cobalt deprivation: Induction and microbial community dynamics. Biotechnology and Bioengineering, 2008, 99, 49-58.	3.3	36
70	Catalytic response of microbial biofilms grown under fixed anode potentials depends on electrochemical cell configuration. Chemical Engineering Journal, 2013, 230, 532-536.	12.7	36
71	Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils. Environmental Science and Pollution Research, 2016, 23, 7899-7910.	5.3	35
72	Generation of electricity in microbial fuel cells at sub-ambient temperatures. Journal of Power Sources, 2011, 196, 2676-2681.	7.8	32

#	Article	IF	CITATIONS
73	Electricity generation in single-chamber microbial fuel cells using a carbon source sampled from anaerobic reactors utilizing grass silage. Bioresource Technology, 2011, 102, 404-410.	9.6	29
74	Effect of sulfate on low-temperature anaerobic digestion. Frontiers in Microbiology, 2014, 5, 376.	3.5	29
75	New Training to Meet the Global Phosphorus Challenge. Environmental Science & Technology, 2019, 53, 8479-8481.	10.0	29
76	Assessment of anaerobic wastewater treatment failure using terminal restriction fragment length polymorphism analysis. Journal of Applied Microbiology, 2005, 99, 1463-1471.	3.1	28
77	Low-temperature anaerobic digestion is associated with differential methanogenic protein expression. FEMS Microbiology Letters, 2015, 362, .	1.8	28
78	Common key acidogen populations in anaerobic reactors treating different wastewaters: Molecular identification and quantitative monitoring. Water Research, 2011, 45, 2539-2549.	11.3	27
79	Insights into the low-temperature adaptation and nutritional flexibility of a soil-persistent <i>Escherichia coli</i> . FEMS Microbiology Ecology, 2013, 84, 75-85.	2.7	27
80	Hydrolysis, acidification and methanogenesis during low-temperature anaerobic digestion of dilute dairy wastewater in an inverted fluidised bioreactor. Applied Microbiology and Biotechnology, 2014, 98, 8737-8750.	3.6	27
81	Principles, Advances, and Perspectives of Anaerobic Digestion of Lipids. Environmental Science & Technology, 2022, 56, 4749-4775.	10.0	27
82	Characterisation of norovirus contamination in an Irish shellfishery using real-time RT-qPCR and sequencing analysis. International Journal of Food Microbiology, 2012, 160, 105-112.	4.7	25
83	A Functional Approach To Uncover the Low-Temperature Adaptation Strategies of the Archaeon Methanosarcina barkeri. Applied and Environmental Microbiology, 2013, 79, 4210-4219.	3.1	25
84	Large-scale anaerobic degradation of betaine. Journal of Chemical Technology and Biotechnology, 1999, 74, 1176-1182.	3.2	24
85	Stability and reproducibility of low-temperature anaerobic biological wastewater treatment. FEMS Microbiology Ecology, 2006, 55, 449-458.	2.7	24
86	Agricultural anaerobic digestion power plants in Ireland and Germany: policy and practice. Journal of the Science of Food and Agriculture, 2017, 97, 719-723.	3.5	24
87	Methanogenic community development in anaerobic granular bioreactors treating trichloroethylene (TCE)-contaminated wastewater at 37°C and 15ÂA°C. Water Research, 2011, 45, 2452-2462.	11.3	23
88	Antibacterial Potential of an Antimicrobial Agent Inspired by Peroxidase-Catalyzed Systems. Frontiers in Microbiology, 2017, 8, 680.	3.5	22
89	Microbial Community Redundancy and Resilience Underpins High-Rate Anaerobic Treatment of Dairy-Processing Wastewater at Ambient Temperatures. Frontiers in Bioengineering and Biotechnology, 2020, 8, 192.	4.1	22
90	Functional responses and adaptation of mesophilic microbial communities to psychrophilic anaerobic digestion. FEMS Microbiology Ecology, 2015, 91, fiv132.	2.7	21

#	Article	IF	CITATIONS
91	Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities. Science of the Total Environment, 2016, 568, 1026-1036.	8.0	21
92	The potential for polyphosphate metabolism in Archaea and anaerobic polyphosphate formation in Methanosarcina mazei. Scientific Reports, 2019, 9, 17101.	3.3	21
93	Simulated sunlight inactivation of norovirus and FRNA bacteriophage in seawater. Journal of Applied Microbiology, 2013, 115, 915-922.	3.1	20
94	Propionate degradation by mesophilic anaerobic sludge: Degradation pathways and effects of other volatile fatty acids. Journal of Bioscience and Bioengineering, 1996, 82, 387-391.	0.9	18
95	Temporal microbial diversity changes in solvent-degrading anaerobic granular sludge from low-temperature (15°C) wastewater treatment bioreactors. Systematic and Applied Microbiology, 2007, 30, 471-482.	2.8	18
96	Biotic and abiotic predictors of potential N2O emissions from denitrification in Irish grasslands soils: A national-scale field study. Soil Biology and Biochemistry, 2022, 168, 108637.	8.8	18
97	New Low-Temperature Applications of Anaerobic Wastewater Treatment. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 881-895.	1.7	17
98	Cultivation of low-temperature (15°C), anaerobic, wastewater treatment granules. Letters in Applied Microbiology, 2009, 49, 421-426.	2.2	17
99	Quantifying faecal indicator organism hydrological transfer pathways and phases in agricultural catchments. Science of the Total Environment, 2015, 520, 286-299.	8.0	17
100	Synanthropic spiders, including the global invasive noble false widow Steatoda nobilis, are reservoirs for medically important and antibiotic resistant bacteria. Scientific Reports, 2020, 10, 20916.	3.3	17
101	Development of an enhanced chain elongation process for caproic acid production from waste-derived lactic acid and butyric acid. Journal of Cleaner Production, 2022, 338, 130655.	9.3	17
102	Risk assessment of Escherichia coli in bioaerosols generated following land application of farmyard slurry. Science of the Total Environment, 2021, 791, 148189.	8.0	16
103	First proof of concept for full-scale, direct, low-temperature anaerobic treatment of municipal wastewater. Bioresource Technology, 2021, 341, 125786.	9.6	16
104	Temperature effects on the trophic stages of perennial rye grass anaerobic digestion. Water Science and Technology, 2011, 64, 70-76.	2.5	15
105	Abundance of denitrification genes under different peizometer depths in four Irish agricultural groundwater sites. Environmental Science and Pollution Research, 2013, 20, 6646-6657.	5.3	15
106	Antimicrobials offered from nature: Peroxidase-catalyzed systems and their mimics. Biochemical Pharmacology, 2020, 182, 114281.	4.4	15
107	Pathogen Sources Estimation and Scenario Analysis Using the Soil and Water Assessment Tool (SWAT). Human and Ecological Risk Assessment (HERA), 2010, 16, 913-933.	3.4	14
108	Assessment of the impact of traditional septic tank soakaway systems on water quality in Ireland. Water Science and Technology, 2014, 70, 634-641.	2.5	14

#	Article	IF	CITATIONS
109	Toward Assessing Farm-Based Anaerobic Digestate Public Health Risks: Comparative Investigation With Slurry, Effect of Pasteurization Treatments, and Use of Miniature Bioreactors as Proxies for Pathogen Spiking Trials. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	14
110	Perturbationâ€independent community development in lowâ€temperature anaerobic biological wastewater treatment bioreactors. Biotechnology and Bioengineering, 2010, 105, 79-87.	3.3	13
111	Sensitivity of streamflow and microbial water quality to future climate and land use change in the West of Ireland. Regional Environmental Change, 2016, 16, 2111-2128.	2.9	12
112	Long Chain Fatty Acid Degradation Coupled to Biological Sulfidogenesis: A Prospect for Enhanced Metal Recovery. Frontiers in Bioengineering and Biotechnology, 2020, 8, 550253.	4.1	12
113	Quantitative microbial risk assessment associated with ready-to-eat salads following the application of farmyard manure and slurry or anaerobic digestate to arable lands. Science of the Total Environment, 2021, 806, 151227.	8.0	10
114	Evaluating <i>E. coli</i> Transport Risk in Soil using Dye and Bromide Tracers. Soil Science Society of America Journal, 2012, 76, 663-673.	2.2	9
115	Impact of Trichloroethylene Exposure on the Microbial Diversity and Protein Expression in Anaerobic Granular Biomass at 37°C and 15°C. Archaea, 2012, 2012, 1-13.	2.3	9
116	Continuous culture of Escherichia coli, under selective pressure by a novel antimicrobial complex, does not result in development of resistance. Scientific Reports, 2019, 9, 2401.	3.3	9
117	Enhanced Methanization of Long-Chain Fatty Acid Wastewater at 20°C in the Novel Dynamic Sludge Chamber–Fixed Film Bioreactor. Frontiers in Energy Research, 2020, 8, .	2.3	9
118	Evaluation of pathogen concentration in anaerobic digestate using a predictive modelling approach (ADRISK). Science of the Total Environment, 2021, 800, 149574.	8.0	9
119	The hydrolysis and biogas production of complex cellulosic substrates using three anaerobic biomass sources. Water Science and Technology, 2013, 67, 293-298.	2.5	8
120	In vitro comparative cytotoxicity study of a novel biocidal iodo-thiocyanate complex. Toxicology in Vitro, 2018, 50, 264-273.	2.4	8
121	Transforming phosphorus use on the island of Ireland: A model for a sustainable system. Science of the Total Environment, 2019, 656, 852-861.	8.0	8
122	Soil prokaryotic community resilience, fungal colonisation and increased cross-domain co-occurrence in response to a plant-growth enhancing organic amendment. Soil Biology and Biochemistry, 2020, 149, 107937.	8.8	8
123	Using microbiological tracers to assess the impact of winter land use restrictions on the quality of stream headwaters in a small catchment. Science of the Total Environment, 2016, 541, 949-956.	8.0	7
124	Novel slurry additive reduces gaseous emissions during storage thereby improving renewable energy and fertiliser potential. Journal of Cleaner Production, 2022, 358, 132004.	9.3	7
125	A Small Study of Bacterial Contamination of Anaerobic Digestion Materials and Survival in Different Feed Stocks. Bioengineering, 2020, 7, 116.	3.5	6
126	Mutation rate and efflux response of bacteria exposed to a novel antimicrobial iodo-thiocyanate complex. Journal of Global Antimicrobial Resistance, 2020, 22, 13-17.	2.2	5

#	Article	IF	CITATIONS
127	Quantitative microbial human exposure model for faecal indicator bacteria and risk assessment of pathogenic Escherichia coli in surface runoff following application of dairy cattle slurry and co-digestate to grassland. Journal of Environmental Management, 2021, 299, 113627.	7.8	5
128	A Bayesian inference approach to quantify average pathogen loads in farmyard manure and slurry using open-source Irish datasets. Science of the Total Environment, 2021, 786, 147474.	8.0	4
129	Determination and localisation of in situ substrate uptake by anaerobic wastewater treatment granular biofilms. Water Science and Technology, 2007, 55, 369-376.	2.5	2
130	Low temperature anaerobic biotreatment of priority pollutants. Water Science and Technology, 2008, 57, 499-503.	2.5	2
131	Detection and removal of pathogenic norovirus employing tertiary treatment in wastewater and water treatment facilities. Water Practice and Technology, 2014, 9, 370-376.	2.0	2
132	Measurement of Intracellular Calcium Levels of Human Spermatozoa Acrosome Reacted by Electropermeabilization. Archives of Andrology, 1994, 32, 185-195.	1.0	1
133	Insights into the structural dynamics of the bacteriophage T7 DNA polymerase and its complexes. Journal of Molecular Modeling, 2018, 24, 144.	1.8	1
134	Construction and Validation of A Low-cost, Small-scale, Multiplex Continuous Culturing System for Microorganisms. Bio-protocol, 2020, 10, e3813.	0.4	1
135	The effect of soil pH and phosphorus interactions on nitrous oxide emissions and microbial communities involved in nitrogen cycling. Access Microbiology, 2019, 1, .	0.5	Ο