Julie L Fudge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9471491/publications.pdf Version: 2024-02-01

LULIE L FUDCE

#	Article	IF	CITATIONS
1	Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum. Journal of Neuroscience, 2000, 20, 2369-2382.	3.6	1,753
2	New insights into symptoms and neurocircuit function of anorexia nervosa. Nature Reviews Neuroscience, 2009, 10, 573-584.	10.2	682
3	A developmental neurobiological model of motivated behavior: Anatomy, connectivity and ontogeny of the triadic nodes. Neuroscience and Biobehavioral Reviews, 2009, 33, 367-382.	6.1	315
4	Altered Reward Processing in Women Recovered From Anorexia Nervosa. American Journal of Psychiatry, 2007, 164, 1842-1849.	7.2	298
5	Altered Insula Response to Taste Stimuli in Individuals Recovered from Restricting-Type Anorexia Nervosa. Neuropsychopharmacology, 2008, 33, 513-523.	5.4	232
6	The Primate Substantia Nigra and VTA: Integrative Circuitry and Function. Critical Reviews in Neurobiology, 1997, 11, 323-342.	3.1	230
7	Intrinsic Functional Connectivity of Amygdala-Based Networks in Adolescent Generalized Anxiety Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2013, 52, 290-299.e2.	0.5	224
8	Sucrose activates human taste pathways differently from artificial sweetener. NeuroImage, 2008, 39, 1559-1569.	4.2	214
9	Extending the amygdala in theories of threat processing. Trends in Neurosciences, 2015, 38, 319-329.	8.6	212
10	Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience, 2002, 110, 257-275.	2.3	195
11	Altered Insula Response to Sweet Taste Processing After Recovery From Anorexia and Bulimia Nervosa. American Journal of Psychiatry, 2013, 170, 1143-1151.	7.2	157
12	Nucleus accumbens, thalamus and insula connectivity during incentive anticipation in typical adults and adolescents. NeuroImage, 2013, 66, 508-521.	4.2	147
13	Hunger Does Not Motivate Reward in Women Remitted from Anorexia Nervosa. Biological Psychiatry, 2015, 77, 642-652.	1.3	131
14	The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neuroscience, 2000, 97, 479-494.	2.3	125
15	Insular and gustatory inputs to the caudal ventral striatum in primates. Journal of Comparative Neurology, 2005, 490, 101-118.	1.6	123
16	Neurocircuity of Eating Disorders. Current Topics in Behavioral Neurosciences, 2010, 6, 37-57.	1.7	106
17	Cortico-Amygdala-Striatal Circuits Are Organized as Hierarchical Subsystems through the Primate Amygdala. Journal of Neuroscience, 2013, 33, 14017-14030.	3.6	97
18	From Galactorrhea to Osteopenia: Rethinking Serotonin–Prolactin Interactions. Neuropsychopharmacology, 2004, 29, 833-846.	5.4	96

Julie L Fudge

#	Article	lF	CITATIONS
19	Resting state connectivity of the bed nucleus of the stria terminalis at ultraâ€high field. Human Brain Mapping, 2015, 36, 4076-4088.	3.6	84
20	The Interface of Oxytocin-Labeled Cells and Serotonin Transporter-Containing Fibers in the Primate Hypothalamus: A Substrate for SSRIs Therapeutic Effects?. Neuropsychopharmacology, 2007, 32, 977-988.	5.4	83
21	Altered striatal response to reward in bulimia nervosa after recovery. International Journal of Eating Disorders, 2010, 43, 289-294.	4.0	82
22	Altered brain response to reward and punishment in adolescents with Anorexia nervosa. Psychiatry Research - Neuroimaging, 2013, 214, 331-340.	1.8	76
23	Revisiting the hippocampal–amygdala pathway in primates: Association with immature-appearing neurons. Neuroscience, 2012, 212, 104-119.	2.3	75
24	Connectivity between the central nucleus of the amygdala and the bed nucleus of the stria terminalis in the non-human primate: neuronal tract tracing and developmental neuroimaging studies. Brain Structure and Function, 2017, 222, 21-39.	2.3	70
25	Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates. Neuroscience, 2001, 104, 807-827.	2.3	68
26	Defining the Caudal Ventral Striatum in Primates: Cellular and Histochemical Features. Journal of Neuroscience, 2002, 22, 10078-10082.	3.6	65
27	Amygdala projections to central amygdaloid nucleus subdivisions and transition zones in the primate. Neuroscience, 2009, 159, 819-841.	2.3	63
28	Overexpressing Corticotropin-Releasing Factor in the Primate Amygdala Increases Anxious Temperament and Alters Its Neural Circuit. Biological Psychiatry, 2016, 80, 345-355.	1.3	61
29	Where and what is the paralaminar nucleus? A review on a unique and frequently overlooked area of the primate amygdala. Neuroscience and Biobehavioral Reviews, 2012, 36, 520-535.	6.1	58
30	The Extended Amygdala and the Dopamine System: Another Piece of the Dopamine Puzzle. Journal of Neuropsychiatry and Clinical Neurosciences, 2003, 15, 306-316.	1.8	53
31	Distribution of Serotonin Transporter Labeled Fibers in Amygdaloid Subregions: Implications for Mood Disorders. Biological Psychiatry, 2006, 60, 479-490.	1.3	47
32	Amygdaloid inputs define a caudal component of the ventral striatum in primates. Journal of Comparative Neurology, 2004, 476, 330-347.	1.6	46
33	Amygdala projections to the lateral bed nucleus of the stria terminalis in the macaque: Comparison with ventral striatal afferents. Journal of Comparative Neurology, 2013, 521, 3191-3216.	1.6	45
34	Neural Insensitivity to the Effects of Hunger in Women Remitted From Anorexia Nervosa. American Journal of Psychiatry, 2020, 177, 601-610.	7.2	39
35	Bcl-2 immunoreactive neurons are differentially distributed in subregions of the amygdala and hippocampus of the adult macaque. Neuroscience, 2004, 127, 539-556.	2.3	34
36	Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate. Neuropsychopharmacology, 2017, 42, 1563-1576.	5.4	31

Julie L Fudge

#	Article	IF	CITATIONS
37	Heterogeneous dopamine populations project to specific subregions of the primate amygdala. Neuroscience, 2010, 165, 1501-1518.	2.3	25
38	Considering the Role of the Amygdala in Psychotic Illness. Journal of Neuropsychiatry and Clinical Neurosciences, 1998, 10, 383-394.	1.8	24
39	Long-term behavioral consequences of stress exposure in adolescent versus young adult rats. Behavioural Brain Research, 2012, 229, 226-234.	2.2	24
40	Proliferating cells in the adolescent rat amygdala: Characterization and response to stress. Neuroscience, 2015, 311, 105-117.	2.3	20
41	Somatostatin Gene and Protein Expression in the Non-human Primate Central Extended Amygdala. Neuroscience, 2019, 400, 157-168.	2.3	20
42	Response in taste circuitry is not modulated by hunger and satiety in women remitted from bulimia nervosa Journal of Abnormal Psychology, 2017, 126, 519-530.	1.9	20
43	Transcriptional Profiling of Primate Central Nucleus of the Amygdala Neurons to Understand the Molecular Underpinnings of Early-Life Anxious Temperament. Biological Psychiatry, 2020, 88, 638-648.	1.3	18
44	Differences in amygdala cell proliferation between adolescent and young adult rats. Developmental Psychobiology, 2014, 56, 517-528.	1.6	16
45	Altered sensitization patterns to sweet food stimuli in patients recovered from anorexia and bulimia nervosa. Psychiatry Research - Neuroimaging, 2015, 234, 305-313.	1.8	16
46	Maternal deprivation alters expression of neural maturation gene <i>tbr1</i> in the amygdala paralaminar nucleus in infant female macaques. Developmental Psychobiology, 2017, 59, 235-249.	1.6	15
47	Perigenual and Subgenual Anterior Cingulate Afferents Converge on Common Pyramidal Cells in Amygdala Subregions of the Macaque. Journal of Neuroscience, 2021, 41, 9742-9755.	3.6	10
48	Unbiased Stereological Estimates of Dopaminergic and GABAergic Neurons in the A10, A9, and A8 Subregions in the Young Male Macaque. Neuroscience, 2022, 496, 152-164.	2.3	5
49	The Architecture of Cortex—in Illness and in Health. Biological Psychiatry, 2016, 80, e95-e97.	1.3	3
50	Cortical Granularity Shapes the Organization of Afferent Paths to the Amygdala and Its Striatal Targets in Nonhuman Primate. Journal of Neuroscience, 2022, 42, 1436-1453.	3.6	3
51	Letter to the Editor. Psychoneuroendocrinology, 2015, 60, 57.	2.7	2
52	A tale of two pathways. ELife, 2019, 8, .	6.0	2
53	A Partial Dopamine Lesion Impairs Performance on a Procedural Learning Task: Implications for Parkinson's Disease. Advances in Behavioral Biology, 2002, , 311-321.	0.2	0