## Pedro J Valle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/947114/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF                | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 1  | Lucky imaging speckle statistics applied to halo suppression. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2402-2407.                                                         | 4.4               | 0            |
| 2  | Optical-component-only adaptive optics. Optics Letters, 2021, 46, 3452.                                                                                                                        | 3.3               | 2            |
| 3  | Planetary system detection by estimating the covariance of coronagraphic lucky images. Monthly<br>Notices of the Royal Astronomical Society, 2019, 488, 3262-3267.                             | 4.4               | 0            |
| 4  | Quaternary adaptive optics. Optics Express, 2019, 27, 24524.                                                                                                                                   | 3.4               | 4            |
| 5  | Digital coronography: application to space telescope images. OSA Continuum, 2019, 2, 2038.                                                                                                     | 1.8               | 1            |
| 6  | Digital coronagraph algorithm. OSA Continuum, 2018, 1, 625.                                                                                                                                    | 1.8               | 4            |
| 7  | Covariance of lucky images: performance analysis. Monthly Notices of the Royal Astronomical<br>Society, 2017, 464, 680-687.                                                                    | 4.4               | 4            |
| 8  | Amplitude image processing by diffractive optics. Optics Express, 2016, 24, 3268.                                                                                                              | 3.4               | 1            |
| 9  | Covariance of lucky images for increasing objects contrast: diffraction-limited images in<br>ground-based telescopes. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2765-2771. | 4.4               | 5            |
| 10 | Analysis of Strehl ratio limit with superresolution binary phase filters. Chinese Optics Letters, 2016, 14, 071101-71104.                                                                      | 2.9               | 0            |
| 11 | Experimental validation of Lyot stop apodization in ground-based coronagraphy. Monthly Notices of the Royal Astronomical Society, 2015, 446, 627-632.                                          | 4.4               | 3            |
| 12 | x–y curvature wavefront sensor. Optics Letters, 2015, 40, 1655.                                                                                                                                | 3.3               | 4            |
| 13 | Diffractive optical elements to improve the quality of aberrated images. Journal of Optics (United) Tj ETQq1 1 0.7                                                                             | '84314 rgl<br>2.2 | BT_/Overlock |
| 14 | Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging.<br>Optics Express, 2013, 21, 12744.                                                               | 3.4               | 15           |
| 15 | Analytic design of multiple-axis, multifocal diffractive lenses. Optics Letters, 2012, 37, 1121.                                                                                               | 3.3               | 21           |
| 16 | Coronagraphs adapted to atmosphere conditions. Optics Express, 2012, 20, 4574.                                                                                                                 | 3.4               | 1            |
| 17 | Wavefront sensing using diffractive elements. Optics Letters, 2012, 37, 3813.                                                                                                                  | 3.3               | 8            |
|    |                                                                                                                                                                                                |                   |              |

18 Pyramidal wavefront sensor using diffractive lenses. , 2012, , .

Pedro J Valle

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Focal modulation using rotating phase filters. Optics Express, 2010, 18, 7820.                                                                                   | 3.4 | 7         |
| 20 | Coronagraphic mask design using Hermite functions. Optics Express, 2009, 17, 20515.                                                                              | 3.4 | 4         |
| 21 | Pupil apodization for increasing data storage density. Chinese Optics Letters, 2009, 7, 720-723.                                                                 | 2.9 | 8         |
| 22 | Multiple coaxial foci generation by phase-only pupil filters. Optics Communications, 2007, 272, 325-329.                                                         | 2.1 | 9         |
| 23 | Variable resolution with pupil masks. Optics Communications, 2006, 257, 247-254.                                                                                 | 2.1 | 7         |
| 24 | Reduction of the diffraction pattern in segmented apertures. Optical Engineering, 2006, 45, 098001.                                                              | 1.0 | 2         |
| 25 | Improving resolution in large telescopes. SPIE Newsroom, 2006, , .                                                                                               | 0.1 | 0         |
| 26 | Wavefront sensing by optical differentiation. , 2005, , .                                                                                                        |     | 1         |
| 27 | Visual axial PSF of diffractive trifocal lenses. Optics Express, 2005, 13, 2782.                                                                                 | 3.4 | 28        |
| 28 | Focusing properties of annular binary phase filters. Optics Communications, 2004, 229, 71-77.                                                                    | 2.1 | 61        |
| 29 | Analytical design of superresolving phase filters. Optics Communications, 2004, 241, 249-253.                                                                    | 2.1 | 45        |
| 30 | Teaching optics with a spatial light modulator. , 2002, 4588, 568.                                                                                               |     | 0         |
| 31 | Light scattering computational methods for particles on substrates. Journal of Quantitative<br>Spectroscopy and Radiative Transfer, 2001, 70, 383-393.           | 2.3 | 5         |
| 32 | Optical contrast, topographic contrast and artifacts in illumination-mode scanning near-field optical microscopy. Journal of Applied Physics, 1999, 86, 648-656. | 2.5 | 25        |
| 33 | Enhanced backscatter from monodisperse contaminants on a substrate. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 63, 383-392.              | 2.3 | 0         |
| 34 | Tracking Scattering Minima to Size Metallic Particles on Flat Substrates. Particle and Particle Systems<br>Characterization, 1999, 16, 113-118.                  | 2.3 | 9         |
| 35 | Scattering from particles on surfaces:?visibility factor and polydispersity. Optics Letters, 1999, 24, 1451.                                                     | 3.3 | 9         |
| 36 | <title>Application of a double interaction model to the backscattering peak observed for polydisperse particulate samples</title> . , 1999, , .                  |     | 0         |

Pedro J Valle

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | <title>Visibility factor for low-particle-size polydispersity</title> . , 1999, , .                                                                                                                                       |     | 0         |
| 38 | Contrast mechanisms in illumination-mode SNOM. Ultramicroscopy, 1998, 71, 39-48.                                                                                                                                          | 1.9 | 5         |
| 39 | Comparison of real- and perfect-conductor approaches for scattering by a cylinder on a flat<br>substrate. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1998, 15,<br>158.            | 1.5 | 14        |
| 40 | A detailed study of the scattered near field of nanoprotuberances on flat surfaces. Journal Physics D:<br>Applied Physics, 1998, 31, 3009-3019.                                                                           | 2.8 | 5         |
| 41 | Multiple scattering in particulate surfaces: Cross-polarization ratios and shadowing effects. Optics Communications, 1997, 137, 359-366.                                                                                  | 2.1 | 17        |
| 42 | Near field by subwavelength particles on metallic substrates with cylindrical surface plasmon excitation. Optics Communications, 1997, 137, 334-342.                                                                      | 2.1 | 18        |
| 43 | Scattering by a metallic cylinder on a substrate: burying effects. Optics Letters, 1996, 21, 1330.                                                                                                                        | 3.3 | 20        |
| 44 | Electromagnetic interaction between two parallel circular cylinders on a planar interface. IEEE<br>Transactions on Antennas and Propagation, 1996, 44, 321-325.                                                           | 5.1 | 20        |
| 45 | Metallic particle sizing on flat surfaces: Application to conducting substrates. Applied Physics<br>Letters, 1996, 68, 3087-3089.                                                                                         | 3.3 | 21        |
| 46 | Near-field scattering from subwavelength metallic protuberances on conducting flat substrates.<br>Physical Review B, 1995, 51, 13681-13690.                                                                               | 3.2 | 24        |
| 47 | Application of a ray-tracing model to the study of back scattering from surfaces with particles.<br>Journal Physics D: Applied Physics, 1995, 28, 1040-1046.                                                              | 2.8 | 11        |
| 48 | Scattering from particulate metallic surfaces: effect of surface particle density. Optical Engineering, 1995, 34, 1200.                                                                                                   | 1.0 | 11        |
| 49 | On the multiple scattering effects for small metallic particles on flat conducting substrates. Waves in Random and Complex Media, 1995, 5, 73-88.                                                                         | 1.5 | 11        |
| 50 | Backscattering from particulate surfaces: experiment and theoretical modeling. Optical Engineering, 1994, 33, 1261.                                                                                                       | 1.0 | 23        |
| 51 | Experimental study of copolarized light scattering by spherical metallic particles on conducting flat<br>substrates. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1993, 10,<br>141. | 1.5 | 26        |
| 52 | Experimental Study of Periodically Modulated Light Beams by Measuring the Moment Generating Function of the Number of photopulses. Spectroscopy Letters, 1993, 26, 733-744.                                               | 1.0 | 0         |
| 53 | Simple experimental technique for measuring lifetimes of low-intensity monoexponential fluorescence signals. , 1992, 1603, 504.                                                                                           |     | 0         |
| 54 | Signal-to-noise ratio improvement by measuring the moment generating function of the number of photopulses for low intensity periodical signals. Journal of Optics, 1992, 1, 281-288.                                     | 0.5 | 1         |

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Application of a Laplace transform method to binary mixtures of spherical particles in solution for low scattered intensity. Journal Physics D: Applied Physics, 1992, 25, 357-361. | 2.8 | 7         |

56 Study of birefringent-type tuning devices through 4X4 matrix algebra. , 1990, 1319, 43.

0