Fang Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9471083/publications.pdf

Version: 2024-02-01

126907 149698 4,071 56 33 56 h-index citations g-index papers 56 56 56 3617 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Revisiting the adsorption of antimony on manganese dioxide: The overlooked dissolution of manganese. Chemical Engineering Journal, 2022, 429, 132468.	12.7	16
2	Thiol-rich, porous carbon for the efficient capture of silver: Understanding the relationship between the surface groups and transformation pathways of silver. Chemical Engineering Journal, 2022, 427, 131470.	12.7	60
3	Insights into the binding manners of an Fe doped MOF-808 in high-performance adsorption: a case of antimony adsorption. Environmental Science: Nano, 2022, 9, 254-264.	4.3	10
4	Enhanced photocatalytic degradation and H2 evolution performance of N CDs/S-C3N4 S-scheme heterojunction constructed by Ï∈-Ï€ conjugate self-assembly. Journal of Materials Science and Technology, 2022, 114, 222-232.	10.7	71
5	Perfluorinated conjugated microporous polymer for targeted capture of Ag(I) from contaminated water. Environmental Research, 2022, 211, 113007.	7.5	5
6	A comparison of SMX degradation by persulfate activated with different nanocarbons: Kinetics, transformation pathways, and toxicity. Applied Catalysis B: Environmental, 2022, 310, 121345.	20.2	59
7	Rapid and selective recycling of Ag(I) from wastewater through an allylrhodanine functionalized micro-filtration membrane. Chemical Engineering Journal, 2022, , 136376.	12.7	4
8	Double-defect-induced polarization enhanced OV-BiOBr/Cu2â^'xS high-low junction for boosted photoelectrochemical hydrogen evolution. Applied Catalysis B: Environmental, 2022, 314, 121502.	20.2	58
9	Rationally designed conjugated microporous polymers for contaminants adsorption. Science of the Total Environment, 2021, 750, 141683.	8.0	45
10	Defect-rich porous carbon with anti-interference capability for adsorption of bisphenol A via long-range hydrophobic interaction synergized with short-range dispersion force. Journal of Hazardous Materials, 2021, 403, 123705.	12.4	66
11	Engineering paths of sustainable and green photocatalytic degradation technology for pharmaceuticals and organic contaminants of emerging concern. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100465.	5.9	13
12	Electrochemical recovery and high value-added reutilization of heavy metal ions from wastewater: Recent advances and future trends. Environment International, 2021, 152, 106512.	10.0	81
13	High exposure effect of the adsorption site significantly enhanced the adsorption capacity and removal rate: A case of adsorption of hexavalent chromium by quaternary ammonium polymers (QAPs). Journal of Hazardous Materials, 2021, 416, 125829.	12.4	36
14	Insights into ion imprinted membrane with a delayed permeation mechanism for enhancing Cd2+ selective separation. Journal of Hazardous Materials, 2021, 416, 125772.	12.4	20
15	Gradient Hydrogen Migration Modulated with Self-Adapting S Vacancy in Copper-Doped ZnIn ₂ S ₄ Nanosheet for Photocatalytic Hydrogen Evolution. ACS Nano, 2021, 15, 15238-15248.	14.6	173
16	Tandem type PRBs-like technology implanted with targeted functional materials for efficient resourceful treatment of heavy metal ions from mining wastewater. Chemical Engineering Journal, 2021, 420, 130506.	12.7	9
17	Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and environmental applications. Science of the Total Environment, 2021, 786, 147430.	8.0	19
18	Revisiting the Graphitized Nanodiamond-Mediated Activation of Peroxymonosulfate: Singlet Oxygenation versus Electron Transfer. Environmental Science & Environmental Science & 2021, 55, 16078-16087.	10.0	155

#	Article	IF	CITATIONS
19	Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions. Chemical Engineering Journal, 2020, 379, 122264.	12.7	238
20	Evaluating the adsorptivity of organo-functionalized silica nanoparticles towards heavy metals: Quantitative comparison and mechanistic insight. Journal of Hazardous Materials, 2020, 387, 121676.	12.4	111
21	Bacteria-affinity aminated carbon nanotubes bridging reduced graphene oxide for highly efficient microbial electrocatalysis. Environmental Research, 2020, 191, 110212.	7.5	7
22	Porous Z-scheme MnO2/Mn-modified alkalinized g-C3N4 heterojunction with excellent Fenton-like photocatalytic activity for efficient degradation of pharmaceutical pollutants. Separation and Purification Technology, 2020, 246, 116890.	7.9	69
23	Potential Difference Driving Electron Transfer <i>via</i> Defective Carbon Nanotubes toward Selective Oxidation of Organic Micropollutants. Environmental Science & Environmen	10.0	288
24	Simultaneous heavy metals removal via in situ construction of multivariate metal-organic gels in actual wastewater and the reutilization for $Sb(V)$ capture. Chemical Engineering Journal, 2020, 400, 125359.	12.7	23
25	Electrodeposited graphene hybridized graphitic carbon nitride anchoring ultrafine palladium nanoparticles for remarkable methanol electrooxidation. International Journal of Hydrogen Energy, 2020, 45, 21483-21492.	7.1	19
26	Design and synthesis of robust Z-scheme ZnS-SnS2 n-n heterojunctions for highly efficient degradation of pharmaceutical pollutants: Performance, valence/conduction band offset photocatalytic mechanisms and toxicity evaluation. Journal of Hazardous Materials, 2020, 392, 122345.	12.4	121
27	Efficient antimony removal by self-assembled core-shell nanocomposite of Co3O4@rGO and the analysis of its adsorption mechanism. Environmental Research, 2020, 187, 109657.	7.5	39
28	Lattice-Defect-Enhanced Adsorption of Arsenic on Zirconia Nanospheres: A Combined Experimental and Theoretical Study. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29736-29745.	8.0	121
29	Solvothermal synthesis of Z-scheme AgIn5S8/Bi2WO6 nano-heterojunction with excellent performance for photocatalytic degradation and Cr(VI) reduction. Journal of Alloys and Compounds, 2019, 805, 41-49.	5 . 5	68
30	Protonation of rhodanine polymers for enhancing the capture and recovery of Ag ⁺ from highly acidic wastewater. Environmental Science: Nano, 2019, 6, 3307-3315.	4.3	62
31	Carbon quantum dot-sensitized and tunable luminescence of Ca ₁₉ Mg ₂ (PO ₄) ₁₄ :Ln ³⁺ (Ln ³⁺ =) ⟨i>via /i> a sol–gel process, lournal of Materials Chemistry C. 2019, 7, 2361-2375.	Tj ETQq1	1 0.784314
32	Building electrode with three-dimensional macroporous interface from biocompatible polypyrrole and conductive graphene nanosheets to achieve highly efficient microbial electrocatalysis. Biosensors and Bioelectronics, 2019, 141, 111444.	10.1	81
33	Bandgap engineering of hierarchical network-like SnIn4S8 microspheres through preparation temperature for excellent photocatalytic performance and high stability. Green Energy and Environment, 2019, 4, 264-269.	8.7	12
34	Visible-light-driven Z-scheme rGO/Bi ₂ S ₃ â€"BiOBr heterojunctions with tunable exposed BiOBr (102) facets for efficient synchronous photocatalytic degradation of 2-nitrophenol and Cr(<scp>vi</scp>) reduction. Environmental Science: Nano, 2019, 6, 3670-3683.	4.3	113
35	The facile fabrication of novel visible-light-driven Z-scheme CulnS2/Bi2WO6 heterojunction with intimate interface contact by in situ hydrothermal growth strategy for extraordinary photocatalytic performance. Chemical Engineering Journal, 2019, 356, 819-829.	12.7	177
36	Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight. Journal of Colloid and Interface Science, 2019, 539, 223-234.	9.4	213

#	Article	IF	CITATIONS
37	Identification and Regulation of Active Sites on Nanodiamonds: Establishing a Highly Efficient Catalytic System for Oxidation of Organic Contaminants. Advanced Functional Materials, 2018, 28, 1705295.	14.9	370
38	Tuning the performance of the non-fullerene organic solar cells by the polarizability. RSC Advances, 2018, 8, 3809-3815.	3.6	10
39	New insight on the adsorption capacity of metallogels for antimonite and antimonate removal: From experimental to theoretical study. Journal of Hazardous Materials, 2018, 346, 218-225.	12.4	35
40	Monodisperse spherical sandwiched core-shell structured SiO2Au Ta2O5 and SiO2Au Ta3N5 composites as visible-light plasmonic photocatalysts. International Journal of Hydrogen Energy, 2018, 43, 20546-20562.	7.1	13
41	The band structure control of visible-light-driven rGO/ZnS-MoS2 for excellent photocatalytic degradation performance and long-term stability. Chemical Engineering Journal, 2018, 350, 248-256.	12.7	92
42	Reduced graphene oxide enhanced magnetic nanocomposites for removal of carbamazepine. Journal of Materials Science, 2018, 53, 15474-15486.	3.7	22
43	Efficient heterojunction solar cells based on the synergy between planarity and dipole moment in fluorinated-thienothiophenes-based donor-acceptor polymers. Synthetic Metals, 2018, 245, 42-50.	3.9	9
44	Facile solvothermal fabrication of cubic-like reduced graphene oxide/AgIn5S8 nanocomposites with anti-photocorrosion and high visible-light photocatalytic performance for highly-efficient treatment of nitrophenols and real pharmaceutical wastewater. Applied Catalysis A: General, 2018, 565, 170-180.	4.3	15
45	Recovery of Silver from Wastewater Using a New Magnetic Photocatalytic Ion-Imprinted Polymer. ACS Sustainable Chemistry and Engineering, 2017, 5, 2090-2097.	6.7	70
46	MOF-derived magnetic porous carbon-based sorbent: Synthesis, characterization, and adsorption behavior of organic micropollutants. Advanced Powder Technology, 2017, 28, 1769-1779.	4.1	92
47	Efficient Removal of Antimony (III, V) from Contaminated Water by Amino Modification of a Zirconium Metal–Organic Framework with Mechanism Study. Journal of Chemical & Engineering Data, 2017, 62, 1519-1529.	1.9	93
48	Heterogeneous Fenton-like catalysis of Fe-MOF derived magnetic carbon nanocomposites for degradation of 4-nitrophenol. RSC Advances, 2017, 7, 49024-49030.	3.6	87
49	Activated biochar derived from pomelo peel as a high-capacity sorbent for removal of carbamazepine from aqueous solution. RSC Advances, 2017, 7, 54969-54979.	3.6	58
50	Nd ₂ (S, Se, Te) ₃ Colloidal Quantum Dots: Synthesis, Energy Level Alignment, Charge Transfer Dynamics, and Their Applications to Solar Cells. Advanced Functional Materials, 2016, 26, 254-266.	14.9	53
51	Tuning the fluorescence lifetime of donor polymers containing different proportion of electron withdrawing groups inhybrid solar cells. Synthetic Metals, 2016, 221, 19-24.	3.9	2
52	Random Terpolymer Designed with Tunable Fluorescence Lifetime for Efficient Organic/Inorganic Hybrid Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17408-17415.	8.0	17
53	Removal of Cadmium(II) from Wastewater Using Novel Cadmium Ion-Imprinted Polymers. Journal of Chemical & Chemi	1.9	66
54	Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO ₂). Environmental Science & Eamp; Technology, 2015, 49, 11115-11124.	10.0	233

FANG DENG

#	Article	IF	CITATIONS
55	Synthesis of magnetic ion-imprinted fluorescent CdTe quantum dots by chemical etching and their visualization application for selective removal of Cd(II) from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 186-193.	4.7	36
56	Synthesis of anatase TiO2 in a vinyl-containing ionic liquid and its enhanced photocatalytic activity. Research on Chemical Intermediates, 2013, 39, 2857-2865.	2.7	7