
Jingyan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/947099/publications.pdf Version: 2024-02-01

ΙΝΟΥΛΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Graphene quantum dots in photodynamic therapy. Nanoscale Advances, 2020, 2, 4961-4967.	2.2	21
2	Separating graphene quantum dots by lateral size through gel column chromatography. RSC Advances, 2019, 9, 18898-18901.	1.7	8
3	Three-dimensional composite of Co ₃ O ₄ nanoparticles and nitrogen-doped reduced graphene oxide for lignin model compound oxidation. New Journal of Chemistry, 2018, 42, 11117-11123.	1.4	9
4	Highly Efficient Cofactors of Cu ²⁺ â€Dependent Deoxyribozymes. ChemistrySelect, 2017, 2, 3925-3931.	0.7	3
5	Sorting Graphene Quantum Dots by Using Aluminum Ions. European Journal of Inorganic Chemistry, 2017, 2201-2206.	1.0	3
6	Composites of Graphene Quantum Dots and Reduced Graphene Oxide as Catalysts for Nitroarene Reduction. ACS Omega, 2017, 2, 7293-7298.	1.6	27
7	Graphene Quantum Dots Downregulate Multiple Multidrugâ€Resistant Genes via Interacting with Their Câ€Rich Promoters. Advanced Healthcare Materials, 2017, 6, 1700328.	3.9	30
8	Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1997-2006.	1.7	71
9	Graphene quantum dots with Zn ²⁺ and Ni ²⁺ conjugates can cleave supercoiled DNA. Journal of Coordination Chemistry, 2016, 69, 3395-3402.	0.8	7
10	Effect of Lateral Size of Graphene Quantum Dots on Their Properties and Application. ACS Applied Materials & Interfaces, 2016, 8, 2104-2110.	4.0	95
11	A 1,2,4â€Triazoleâ€based Polynuclear Mixedâ€valence Mn ^{II} Mn ^{III} Complex: Synthesis, Characterization, and Magnetic Property. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2511-2514.	0.6	0
12	Selective oxidation of veratryl alcohol with composites of Au nanoparticles and graphene quantum dots as catalysts. Chemical Communications, 2015, 51, 6318-6321.	2.2	67
13	Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide. ACS Nano, 2015, 9, 7913-7924.	7.3	39
14	Inhibition of ferric ion to oxalate oxidase shed light on the substrate binding site. BioMetals, 2015, 28, 861-868.	1.8	2
15	Interactions of the primers and Mg ²⁺ with graphene quantum dots enhance PCR performance. RSC Advances, 2015, 5, 74515-74522.	1.7	9
16	Composite of graphene quantum dots and Fe ₃ O ₄ nanoparticles: peroxidase activity and application in phenolic compound removal. RSC Advances, 2014, 4, 3299-3305.	1.7	81
17	Effect of coordination sphere of the copper center and Cu―Cu distance on catechol oxidase and nuclease activities of the copper complexes. Applied Organometallic Chemistry, 2014, 28, 372-378.	1.7	3
18	Visualization of the pHâ€dependent dynamic distribution of G2A in living cells. FASEB Journal, 2014, 28, 3965-3974.	0.2	11

JINGYAN ZHANG

#	Article	IF	CITATIONS
19	Stabilization and Induction of Oligonucleotide i-Motif Structure <i>via</i> Graphene Quantum Dots. ACS Nano, 2013, 7, 531-537.	7.3	50
20	Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnology Reviews, 2013, 2, 27-45.	2.6	198
21	Insight into the Cellular Internalization and Cytotoxicity of Graphene Quantum Dots. Advanced Healthcare Materials, 2013, 2, 1613-1619.	3.9	182

22 Graphene: Insight into the Cellular Internalization and Cytotoxicity of Graphene Quantum Dots (Adv.) Tj ETQq0 0 0, gBT /Overlock 10 Tf

23	A facile transport assay for H ⁺ coupled membrane transport using fluorescence probes. Analytical Methods, 2012, 4, 44-46.	1.3	5
24	Synthesis, characterization, and polyphenol oxidase activity of Cu ^{II} , Mn ^{II} , and Fe ^{III} complexes with a N ₂ O ₂ ligand. Journal of Coordination Chemistry, 2012, 65, 1278-1288.	0.8	2
25	Nuclease Activity and Cytotoxicity Enhancement of the DNA Intercalators via Graphene Oxide. Journal of Physical Chemistry C, 2012, 116, 15839-15846.	1.5	26
26	Photo-Fenton Reaction of Graphene Oxide: A New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage. ACS Nano, 2012, 6, 6592-6599.	7.3	478
27	Reducing Graphene Oxide via Hydroxylamine: A Simple and Efficient Route to Graphene. Journal of Physical Chemistry C, 2011, 115, 11957-11961.	1.5	304
28	Direct evidence for the role of imidazole in disproportionation of hydrogen peroxide by a mononuclear manganese salen complex. Transition Metal Chemistry, 2011, 36, 811-817.	0.7	6
29	Catalase-like catalytic reaction of the dinuclear manganese–salen complex. Journal of Coordination Chemistry, 2010, 63, 1611-1618.	0.8	7
30	Horseradish Peroxidase Immobilized on Graphene Oxide: Physical Properties and Applications in Phenolic Compound Removal. Journal of Physical Chemistry C, 2010, 114, 8469-8473.	1.5	204
31	Reduction of graphene oxide via <scp>l</scp> -ascorbic acid. Chemical Communications, 2010, 46, 1112-1114.	2.2	2,098
32	A novel urinary oxalate determination method via a catalase model compound with oxalate oxidase. Analytical Methods, 2010, 2, 254-258.	1.3	14