Eric Larson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9470921/publications.pdf

Version: 2024-02-01

40 papers

21,659 citations

16 h-index 35 g-index

45 all docs 45 docs citations

45 times ranked

30220 citing authors

#	Article	IF	CITATIONS
1	Reduced Theta Sampling in Infants at Risk for Dyslexia across the Sensitive Period of Native Phoneme Learning. International Journal of Environmental Research and Public Health, 2022, 19, 1180.	1.2	2
2	Intracranial Electrode Location and Analysis in MNE-Python. Journal of Open Source Software, 2022, 7, 3897.	2.0	10
3	Improving Localization Accuracy of Neural Sources by Pre-processing: Demonstration With Infant MEG Data. Frontiers in Neurology, 2022, 13, 827529.	1.1	3
4	Infant brain imaging using magnetoencephalography: Challenges, solutions, and best practices. Human Brain Mapping, 2022, 43, 3609-3619.	1.9	4
5	Extended Signal-Space Separation Method for Improved Interference Suppression in MEG. IEEE Transactions on Biomedical Engineering, 2021, 68, 2211-2221.	2.5	6
6	Unified Expression of the Quasi-Static Electromagnetic Field: Demonstration With MEG and EEG Signals. IEEE Transactions on Biomedical Engineering, 2021, 68, 992-1004.	2.5	3
7	Auditory deficits in infants at risk for dyslexia during a linguistic sensitive period predict future language. Neurolmage: Clinical, 2021, 30, 102578.	1.4	7
8	Structural templates for imaging EEG cortical sources in infants. NeuroImage, 2021, 227, 117682.	2.1	15
9	Analysis methods for measuring passive auditory fNIRS responses generated by a block-design paradigm. Neurophotonics, 2021, 8, 025008.	1.7	41
10	Auditory Attention Deployment in Young Adults with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, $2021, 1.$	1.7	8
11	Effectively combining temporal projection noise suppression methods in magnetoencephalography. Journal of Neuroscience Methods, 2020, 341, 108700.	1.3	9
12	SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 2020, 17, 261-272.	9.0	17,539
13	Neural Switch Asymmetry in Feature-Based Auditory Attention Tasks. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 205-215.	0.9	3
14	MNE-BIDS: Organizing electrophysiological data into the BIDS format and facilitating their analysis. Journal of Open Source Software, 2019, 4, 1896.	2.0	65
15	Infant brain responses to felt and observed touch of hands and feet: an <scp>MEG</scp> study. Developmental Science, 2018, 21, e12651.	1.3	79
16	Reducing Sensor Noise in MEG and EEG Recordings Using Oversampled Temporal Projection. IEEE Transactions on Biomedical Engineering, 2018, 65, 1002-1013.	2.5	43
17	A Reproducible MEG/EEG Group Study With the MNE Software: Recommendations, Quality Assessments, and Good Practices. Frontiers in Neuroscience, 2018, 12, 530.	1.4	82
18	Pupillometry shows the effort of auditory attention switching. Journal of the Acoustical Society of America, 2017, 141, 2440-2451.	0.5	28

#	Article	IF	Citations
19	The Importance of Properly Compensating for Head Movements During MEG Acquisition Across Different Age Groups. Brain Topography, 2017, 30, 172-181.	0.8	25
20	Incorporating modern neuroscience findings to improve brain–computer interfaces: tracking auditory attention. Journal of Neural Engineering, 2016, 13, 056017.	1.8	6
21	Mind the Noise Covariance When Localizing Brain Sources with M/EEG. , 2015, , .		8
22	Leveraging anatomical information to improve transfer learning in brain–computer interfaces. Journal of Neural Engineering, 2015, 12, 046027.	1.8	24
23	Potential Use of MEG to Understand Abnormalities in Auditory Function in Clinical Populations. Frontiers in Human Neuroscience, 2014, 8, 151.	1.0	7
24	Switching auditory attention using spatial and non-spatial features recruits different cortical networks. Neurolmage, 2014, 84, 681-687.	2.1	36
25	Effects of augmentative visual training on audio-motor mapping. Human Movement Science, 2014, 35, 145-155.	0.6	4
26	MNE software for processing MEG and EEG data. Neurolmage, 2014, 86, 446-460.	2.1	1,431
27	Combined Auditory and Vibrotactile Feedback for Human–Machine-Interface Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 62-68.	2.7	6
28	Using neuroimaging to understand the cortical mechanisms of auditory selective attention. Hearing Research, 2014, 307, 111-120.	0.9	86
29	The cortical dynamics underlying effective switching of auditory spatial attention. NeuroImage, 2013, 64, 365-370.	2.1	51
30	Influence of preparation time and pitch separation in switching of auditory attention between streams. Journal of the Acoustical Society of America, 2013, 134, EL165-EL171.	0.5	17
31	Towards a next-generation hearing aid through brain state classification and modeling. , 2013, 2013, 2808-11.		1
32	The role of augmentative visual training in auditory human-machine-interface performance., 2013, 2013, 2804-7.		0
33	Auditory Selective Attention Reveals Preparatory Activity in Different Cortical Regions for Selection Based on Source Location and Source Pitch. Frontiers in Neuroscience, 2013, 6, 190.	1.4	60
34	MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 2013, 7, 267.	1.4	1,864
35	Categorical Vowel Perception Enhances the Effectiveness and Generalization of Auditory Feedback in Human-Machine-Interfaces. PLoS ONE, 2013, 8, e59860.	1.1	9
36	Audio-visual feedback for electromyographic control of vowel synthesis., 2012, 2012, 3600-3.		5

ERIC LARSON

#	Article	IF	CITATION
37	Mapping Cortical Dynamics Using Simultaneous MEG/EEG and Anatomically-constrained Minimum-norm Estimates: an Auditory Attention Example. Journal of Visualized Experiments, 2012, , e4262.	0.2	14
38	Neuron-Specific Stimulus Masking Reveals Interference in Spike Timing at the Cortical Level. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 81-89.	0.9	3
39	A Robust and Biologically Plausible Spike Pattern Recognition Network. Journal of Neuroscience, 2010, 30, 15566-15572.	1.7	18
40	A Biologically Plausible Computational Model for Auditory Object Recognition. Journal of Neurophysiology, 2009, 101, 323-331.	0.9	24