Eric Larson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9470921/publications.pdf Version: 2024-02-01

FRICLARSON

#	Article	IF	CITATIONS
1	SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 2020, 17, 261-272.	19.0	17,539
2	MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 2013, 7, 267.	2.8	1,864
3	MNE software for processing MEG and EEG data. NeuroImage, 2014, 86, 446-460.	4.2	1,431
4	Using neuroimaging to understand the cortical mechanisms of auditory selective attention. Hearing Research, 2014, 307, 111-120.	2.0	86
5	A Reproducible MEG/EEG Group Study With the MNE Software: Recommendations, Quality Assessments, and Good Practices. Frontiers in Neuroscience, 2018, 12, 530.	2.8	82
6	Infant brain responses to felt and observed touch of hands and feet: an <scp>MEG</scp> study. Developmental Science, 2018, 21, e12651.	2.4	79
7	MNE-BIDS: Organizing electrophysiological data into the BIDS format and facilitating their analysis. Journal of Open Source Software, 2019, 4, 1896.	4.6	65
8	Auditory Selective Attention Reveals Preparatory Activity in Different Cortical Regions for Selection Based on Source Location and Source Pitch. Frontiers in Neuroscience, 2013, 6, 190.	2.8	60
9	The cortical dynamics underlying effective switching of auditory spatial attention. NeuroImage, 2013, 64, 365-370.	4.2	51
10	Reducing Sensor Noise in MEG and EEG Recordings Using Oversampled Temporal Projection. IEEE Transactions on Biomedical Engineering, 2018, 65, 1002-1013.	4.2	43
11	Analysis methods for measuring passive auditory fNIRS responses generated by a block-design paradigm. Neurophotonics, 2021, 8, 025008.	3.3	41
12	Switching auditory attention using spatial and non-spatial features recruits different cortical networks. NeuroImage, 2014, 84, 681-687.	4.2	36
13	Pupillometry shows the effort of auditory attention switching. Journal of the Acoustical Society of America, 2017, 141, 2440-2451.	1.1	28
14	The Importance of Properly Compensating for Head Movements During MEG Acquisition Across Different Age Groups. Brain Topography, 2017, 30, 172-181.	1.8	25
15	A Biologically Plausible Computational Model for Auditory Object Recognition. Journal of Neurophysiology, 2009, 101, 323-331.	1.8	24
16	Leveraging anatomical information to improve transfer learning in brain–computer interfaces. Journal of Neural Engineering, 2015, 12, 046027.	3.5	24
17	A Robust and Biologically Plausible Spike Pattern Recognition Network. Journal of Neuroscience, 2010, 30, 15566-15572.	3.6	18
18	Influence of preparation time and pitch separation in switching of auditory attention between streams. Journal of the Acoustical Society of America, 2013, 134, EL165-EL171.	1.1	17

Eric Larson

#	Article	IF	CITATIONS
19	Structural templates for imaging EEG cortical sources in infants. NeuroImage, 2021, 227, 117682.	4.2	15
20	Mapping Cortical Dynamics Using Simultaneous MEG/EEG and Anatomically-constrained Minimum-norm Estimates: an Auditory Attention Example. Journal of Visualized Experiments, 2012, , e4262.	0.3	14
21	Intracranial Electrode Location and Analysis in MNE-Python. Journal of Open Source Software, 2022, 7, 3897.	4.6	10
22	Effectively combining temporal projection noise suppression methods in magnetoencephalography. Journal of Neuroscience Methods, 2020, 341, 108700.	2.5	9
23	Categorical Vowel Perception Enhances the Effectiveness and Generalization of Auditory Feedback in Human-Machine-Interfaces. PLoS ONE, 2013, 8, e59860.	2.5	9
24	Mind the Noise Covariance When Localizing Brain Sources with M/EEG. , 2015, , .		8
25	Auditory Attention Deployment in Young Adults with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 2021, , 1.	2.7	8
26	Potential Use of MEG to Understand Abnormalities in Auditory Function in Clinical Populations. Frontiers in Human Neuroscience, 2014, 8, 151.	2.0	7
27	Auditory deficits in infants at risk for dyslexia during a linguistic sensitive period predict future language. Neurolmage: Clinical, 2021, 30, 102578.	2.7	7
28	Combined Auditory and Vibrotactile Feedback for Human–Machine-Interface Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 62-68.	4.9	6
29	Incorporating modern neuroscience findings to improve brain–computer interfaces: tracking auditory attention. Journal of Neural Engineering, 2016, 13, 056017.	3.5	6
30	Extended Signal-Space Separation Method for Improved Interference Suppression in MEG. IEEE Transactions on Biomedical Engineering, 2021, 68, 2211-2221.	4.2	6
31	Audio-visual feedback for electromyographic control of vowel synthesis. , 2012, 2012, 3600-3.		5
32	Effects of augmentative visual training on audio-motor mapping. Human Movement Science, 2014, 35, 145-155.	1.4	4
33	Infant brain imaging using magnetoencephalography: Challenges, solutions, and best practices. Human Brain Mapping, 2022, 43, 3609-3619.	3.6	4
34	Neuron-Specific Stimulus Masking Reveals Interference in Spike Timing at the Cortical Level. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 81-89.	1.8	3
35	Neural Switch Asymmetry in Feature-Based Auditory Attention Tasks. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 205-215.	1.8	3
36	Unified Expression of the Quasi-Static Electromagnetic Field: Demonstration With MEG and EEG Signals. IEEE Transactions on Biomedical Engineering, 2021, 68, 992-1004.	4.2	3

Eric Larson

#	Article	IF	CITATIONS
37	Improving Localization Accuracy of Neural Sources by Pre-processing: Demonstration With Infant MEG Data. Frontiers in Neurology, 2022, 13, 827529.	2.4	3
38	Reduced Theta Sampling in Infants at Risk for Dyslexia across the Sensitive Period of Native Phoneme Learning. International Journal of Environmental Research and Public Health, 2022, 19, 1180.	2.6	2
39	Towards a next-generation hearing aid through brain state classification and modeling. , 2013, 2013, 2808-11.		1
40	The role of augmentative visual training in auditory human-machine-interface performance. , 2013, 2013, 2013, 2804-7.		0