
Andres Aguilera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9470752/publications.pdf Version: 2024-02-01

ANDRES ACHILERA

#	Article	IF	CITATIONS
1	MutSβ regulates G4-associated telomeric R-loops to maintain telomere integrity in ALT cancer cells. Cell Reports, 2022, 39, 110602.	2.9	13
2	RNase H1 Hybrid-Binding Domain-Based Tools for Cellular Biology Studies of DNA–RNA Hybrids in Mammalian Cells. Methods in Molecular Biology, 2022, , 115-125.	0.4	5
3	WASp modulates RPA function on single-stranded DNA in response to replication stress and DNA damage. Nature Communications, 2022, 13, .	5.8	13
4	Origin matters: spontaneous DNA–RNA hybrids do not form in trans as a source of genome instability. Current Genetics, 2021, 67, 93-97.	0.8	5
5	BRCA2 promotes DNAâ€RNA hybrid resolution by DDX5 helicase at DNA breaks to facilitate their repair‡. EMBO Journal, 2021, 40, e106018.	3.5	63
6	A new interaction between BRCA2 and DDX5 promotes the repair of DNA breaks at transcribed chromatin. Molecular and Cellular Oncology, 2021, 8, 1910474.	0.3	4
7	R-Loop–Mediated ssDNA Breaks Accumulate Following Short-Term Exposure to the HDAC Inhibitor Romidepsin. Molecular Cancer Research, 2021, 19, 1361-1374.	1.5	12
8	The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription–replication conflicts. Nature Genetics, 2021, 53, 1050-1063.	9.4	85
9	The human nucleoporin Tpr protects cells from RNA-mediated replication stress. Nature Communications, 2021, 12, 3937.	5.8	20
10	DNA-RNA hybrids at DSBs interfere with repair by homologous recombination. ELife, 2021, 10, .	2.8	26
11	Harmful R-loops are prevented via different cell cycle-specific mechanisms. Nature Communications, 2021, 12, 4451.	5.8	32
12	A transcription-based mechanism for oncogenic β-catenin-induced lethality in BRCA1/2-deficient cells. Nature Communications, 2021, 12, 4919.	5.8	6
13	The SWI/SNF complex, transcription-replication conflicts and cancer: a connection with high therapeutic potential. Molecular and Cellular Oncology, 2021, 8, 1976582.	0.3	2
14	A CDK-regulated chromatin segregase promoting chromosome replication. Nature Communications, 2021, 12, 5224.	5.8	6
15	C. elegans THSC/TREX-2 deficiency causes replication stress and genome instability. Journal of Cell Science, 2021, 134, .	1.2	1
16	ADAR-mediated RNA editing of DNA:RNA hybrids is required for DNA double strand break repair. Nature Communications, 2021, 12, 5512.	5.8	30
17	Heterogeneity of DNA damage incidence and repair in different chromatin contexts. DNA Repair, 2021, 107, 103210.	1.3	4
18	Detection of DNA Double-Strand Breaks by γ-H2AX Immunodetection. Methods in Molecular Biology, 2021, 2153, 1-8.	0.4	9

#	Article	IF	CITATIONS
19	<i>VID22</i> counteracts G-quadruplex-induced genome instability. Nucleic Acids Research, 2021, 49, 12785-12804.	6.5	5
20	Analysis of repair of replication-born double-strand breaks by sister chromatid recombination in yeast. Methods in Enzymology, 2021, 661, 121-138.	0.4	0
21	The role of chromatin at transcription-replication conflicts as a genome safeguard. Biochemical Society Transactions, 2021, 49, 2727-2736.	1.6	8
22	Looping the (R) Loop in DSB Repair via RNA Methylation. Molecular Cell, 2020, 79, 361-362.	4.5	5
23	UAP56/DDX39B is a major cotranscriptional RNA–DNA helicase that unwinds harmful R loops genome-wide. Genes and Development, 2020, 34, 898-912.	2.7	83
24	Spontaneous DNA-RNA hybrids: differential impacts throughout the cell cycle. Cell Cycle, 2020, 19, 525-531.	1.3	3
25	Histone deacetylases facilitate the accurate repair of broken forks. Molecular and Cellular Oncology, 2020, 7, 1705731.	0.3	7
26	TDP-43 mutations link Amyotrophic Lateral Sclerosis with R-loop homeostasis and R loop-mediated DNA damage. PLoS Genetics, 2020, 16, e1009260.	1.5	54
27	Homologous recombination and Mus81 promote replication completion in response to replication fork blockage. EMBO Reports, 2020, 21, e49367.	2.0	28
28	Harmful DNA:RNA hybrids are formed in cis and in a Rad51-independent manner. ELife, 2020, 9, .	2.8	20
29	Histone H3E73Q and H4E53A mutations cause recombinogenic DNA damage. Microbial Cell, 2020, 7, 190-198.	1.4	0
30	Title is missing!. , 2020, 16, e1009260.		0
31	Title is missing!. , 2020, 16, e1009260.		Ο
32	Title is missing!. , 2020, 16, e1009260.		0
33	Title is missing!. , 2020, 16, e1009260.		Ο
34	Title is missing!. , 2020, 16, e1009260.		0
35	Title is missing!. , 2020, 16, e1009260.		0
36	Depletion of the MFAP1/SPP381 Splicing Factor Causes R-Loop-Independent Genome Instability. Cell Reports, 2019, 28, 1551-1563.e7.	2.9	13

#	Article	IF	CITATIONS
37	What causes an RNA-DNA hybrid to compromise genome integrity?. DNA Repair, 2019, 81, 102660.	1.3	14
38	R Loops: From Physiological to Pathological Roles. Cell, 2019, 179, 604-618.	13.5	395
39	Elongation Factor TFIIS Prevents Transcription Stress and R-Loop Accumulation to Maintain Genome Stability. Molecular Cell, 2019, 76, 57-69.e9.	4.5	79
40	Transcription-mediated replication hindrance: a major driver of genome instability. Genes and Development, 2019, 33, 1008-1026.	2.7	171
41	Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microbial Cell, 2019, 6, 1-64.	1.4	47
42	The Nup84 complex coordinates the DNA damage response to warrant genome integrity. Nucleic Acids Research, 2019, 47, 4054-4067.	6.5	18
43	The THO Complex as a Paradigm for the Prevention of Cotranscriptional R-Loops. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 105-114.	2.0	30
44	Rpd3L and Hda1 histone deacetylases facilitate repair of broken forks by promoting sister chromatid cohesion. Nature Communications, 2019, 10, 5178.	5.8	13
45	R-Loops as Promoters of Antisense Transcription. Molecular Cell, 2019, 76, 529-530.	4.5	5
46	The DNA damage response acts as a safeguard against harmful DNA–RNA hybrids of different origins. EMBO Reports, 2019, 20, e47250.	2.0	72
47	A Meiotic Checkpoint Alters Repair Partner Bias to Permit Inter-sister Repair of Persistent DSBs. Cell Reports, 2019, 26, 775-787.e5.	2.9	24
48	The Antitumor Drugs Trabectedin and Lurbinectedin Induce Transcription-Dependent Replication Stress and Genome Instability. Molecular Cancer Research, 2019, 17, 773-782.	1.5	28
49	Multiple signaling kinases target Mrc1 to prevent genomic instability triggered by transcription-replication conflicts. Nature Communications, 2018, 9, 379.	5.8	32
50	Epigenetic features of human telomeres. Nucleic Acids Research, 2018, 46, 2347-2355.	6.5	74
51	Coordinated Activity of Y Family TLS Polymerases and EXO1 Protects Non-S Phase Cells from UV-Induced Cytotoxic Lesions. Molecular Cell, 2018, 70, 34-47.e4.	4.5	26
52	Detection of DNA-RNA Hybrids In Vivo. Methods in Molecular Biology, 2018, 1672, 347-361.	0.4	54
53	Gene gating at nuclear pores prevents the formation of R loops. Molecular and Cellular Oncology, 2018, 5, e1405140.	0.3	2
54	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	1.4	158

#	Article	IF	CITATIONS
55	Human mitochondrial degradosome prevents harmful mitochondrial R loops and mitochondrial genome instability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11024-11029.	3.3	67
56	Yra1-bound RNA–DNA hybrids cause orientation-independent transcription–replication collisions and telomere instability. Genes and Development, 2018, 32, 965-977.	2.7	58
57	DNA–RNA hybrids: the risks of DNA breakage during transcription. Nature Structural and Molecular Biology, 2017, 24, 439-443.	3.6	119
58	Histone Mutants Separate R Loop Formation from Genome Instability Induction. Molecular Cell, 2017, 66, 597-609.e5.	4.5	87
59	Human <scp>THO</scp> –Sin3A interaction reveals new mechanisms to prevent Râ€loops that cause genomeÂinstability. EMBO Journal, 2017, 36, 3532-3547.	3.5	91
60	Physical proximity of chromatin to nuclear pores prevents harmful R loop accumulation contributing to maintain genome stability. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10942-10947.	3.3	38
61	Differential effect of the overexpression of Rad2/XPG family endonucleases on genome integrity in yeast and human cells. DNA Repair, 2017, 57, 66-75.	1.3	7
62	The need to regulate replication fork speed. Science, 2017, 358, 722-723.	6.0	5
63	The Role of Replication-Associated Repair Factors on R-Loops. Genes, 2017, 8, 171.	1.0	40
64	A new role for Rrm3 in repair of replication-born DNA breakage by sister chromatid recombination. PLoS Genetics, 2017, 13, e1006781.	1.5	15
65	The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage. PLoS Genetics, 2017, 13, e1007136.	1.5	47
66	International Institutions: For better or worst. Reflexión PolÃŧica, 2017, 19, 6-15.	0.0	0
67	High-Resolution Mapping of Homologous Recombination Events in rad3 Hyper-Recombination Mutants in Yeast. PLoS Genetics, 2016, 12, e1005938.	1.5	8
68	Excess of Yra1 RNA-Binding Factor Causes Transcription-Dependent Genome Instability, Replication Impairment and Telomere Shortening. PLoS Genetics, 2016, 12, e1005966.	1.5	21
69	Roles of human POLD1 and POLD3 in genome stability. Scientific Reports, 2016, 6, 38873.	1.6	46
70	Transcription–replication conflicts: how they occur and how they are resolved. Nature Reviews Molecular Cell Biology, 2016, 17, 553-563.	16.1	292
71	FANCD2 Facilitates Replication through Common Fragile Sites. Molecular Cell, 2016, 64, 388-404.	4.5	151
72	Transcription as a Threat to Genome Integrity. Annual Review of Biochemistry, 2016, 85, 291-317.	5.0	145

5

#	Article	IF	CITATIONS
73	A unified model for the molecular basis of <i>Xeroderma pigmentosum</i> -Cockayne Syndrome. Rare Diseases (Austin, Tex), 2015, 3, e1079362.	1.8	12
74	Polycomb RING1A/RING1B-dependent histone H2A monoubiquitylation at pericentromeric regions promotes S phase progression. Journal of Cell Science, 2015, 128, 3660-71.	1.2	25
75	Interdependence of the Rad50 Hook and Globular Domain Functions. Molecular Cell, 2015, 57, 479-491.	4.5	46
76	Replication stress and cancer. Nature Reviews Cancer, 2015, 15, 276-289.	12.8	755
77	Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5779-5784.	3.3	90
78	Methods to Study Transcription-Coupled Repair in Chromatin. Methods in Molecular Biology, 2015, 1288, 273-288.	0.4	4
79	R loops: new modulators of genome dynamics and function. Nature Reviews Genetics, 2015, 16, 583-597.	7.7	611
80	RNA polymerase II contributes to preventing transcriptionâ€mediated replication fork stalls. EMBO Journal, 2015, 34, 236-250.	3.5	35
81	The Fanconi Anemia Pathway Protects Genome Integrity from R-loops. PLoS Genetics, 2015, 11, e1005674.	1.5	244
82	Npl3, a new link between RNA-binding proteins and the maintenance of genome integrity. Cell Cycle, 2014, 13, 1524-1529.	1.3	8
83	Cleavage Factor I Links Transcription Termination to DNA Damage Response and Genome Integrity Maintenance in Saccharomyces cerevisiae. PLoS Genetics, 2014, 10, e1004203.	1.5	18
84	The rem Mutations in the ATP-Binding Groove of the Rad3/XPD Helicase Lead to Xeroderma pigmentosum-Cockayne Syndrome-Like Phenotypes. PLoS Genetics, 2014, 10, e1004859.	1.5	8
85	Transcription-Coupled Nucleotide Excision Repair Factors Promote R-Loop-Induced Genome Instability. Molecular Cell, 2014, 56, 777-785.	4.5	445
86	A genome-wide function of THSC/TREX-2 at active genes prevents transcription–replication collisions. Nucleic Acids Research, 2014, 42, 12000-12014.	6.5	17
87	The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription–replication conflicts. Genes and Development, 2014, 28, 735-748.	2.7	152
88	Transcription and Recombination: When RNA Meets DNA. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016543-a016543.	2.3	65
89	BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature, 2014, 511, 362-365.	13.7	428
90	Causes of Genome Instability. Annual Review of Genetics, 2013, 47, 1-32.	3.2	372

#	Article	IF	CITATIONS
91	Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature, 2013, 493, 116-119.	13.7	76
92	R Loops Are Linked to Histone H3 S10 Phosphorylation and Chromatin Condensation. Molecular Cell, 2013, 52, 583-590.	4.5	229
93	Transcription-Associated Genome Instability. Chemical Reviews, 2013, 113, 8638-8661.	23.0	53
94	Transcription coupled repair at the interface between transcription elongation and mRNP biogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 141-150.	0.9	36
95	Yeast Pol4 Promotes Tel1-Regulated Chromosomal Translocations. PLoS Genetics, 2013, 9, e1003656.	1.5	7
96	Histone H3K56 Acetylation, Rad52, and Non-DNA Repair Factors Control Double-Strand Break Repair Choice with the Sister Chromatid. PLoS Genetics, 2013, 9, e1003237.	1.5	84
97	Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination. Nucleic Acids Research, 2013, 41, 1669-1683.	6.5	14
98	The Npl3 hnRNP prevents R-loop-mediated transcription–replication conflicts and genome instability. Genes and Development, 2013, 27, 2445-2458.	2.7	72
99	R-Loop Mediated Transcription-Associated Recombination in trf4Δ Mutants Reveals New Links between RNA Surveillance and Genome Integrity. PLoS ONE, 2013, 8, e65541.	1.1	37
100	Topological constraints impair RNA polymerase II transcription and causes instability of plasmid-borne convergent genes. Nucleic Acids Research, 2012, 40, 1050-1064.	6.5	23
101	Complex Chromosomal Rearrangements Mediated by Break-Induced Replication Involve Structure-Selective Endonucleases. PLoS Genetics, 2012, 8, e1002979.	1.5	44
102	Architecture and nucleic acids recognition mechanism of the THO complex, an mRNP assembly factor. EMBO Journal, 2012, 31, 1605-1616.	3.5	79
103	Distinct Roles of Mus81, Yen1, Slx1-Slx4, and Rad1 Nucleases in the Repair of Replication-Born Double-Strand Breaks by Sister Chromatid Exchange. Molecular and Cellular Biology, 2012, 32, 1592-1603.	1.1	58
104	Râ€loops cause replication impairment and genome instability during meiosis. EMBO Reports, 2012, 13, 923-929.	2.0	67
105	R Loops: From Transcription Byproducts to Threats to Genome Stability. Molecular Cell, 2012, 46, 115-124.	4.5	822
106	New clues to understand the role of THO and other functionally related factors in mRNP biogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 514-520.	0.9	75
107	The Caenorhabditis elegans THO Complex Is Required for the Mitotic Cell Cycle and Development. PLoS ONE, 2012, 7, e52447.	1.1	15
108	The Replication Checkpoint Protects Fork Stability by Releasing Transcribed Genes from Nuclear Pores. Cell, 2011, 146, 233-246.	13.5	204

#	Article	IF	CITATIONS
109	Yeast Sen1 Helicase Protects the Genome from Transcription-Associated Instability. Molecular Cell, 2011, 41, 21-32.	4.5	301
110	A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors. EMBO Journal, 2011, 30, 1953-1964.	3.5	50
111	Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers. BMC Cancer, 2011, 11, 77.	1.1	64
112	Nab2 functions in the metabolism of RNA driven by polymerases II and III. Molecular Biology of the Cell, 2011, 22, 2729-2740.	0.9	33
113	Zim17/Tim15 links mitochondrial iron–sulfur cluster biosynthesis to nuclear genome stability. Nucleic Acids Research, 2011, 39, 6002-6015.	6.5	23
114	Control of the function of the transcription and repair factor TFIIH by the action of the cochaperone Ydj1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15300-15305.	3.3	7
115	Cenome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO Journal, 2011, 30, 3106-3119.	3.5	191
116	New Suppressors of THO Mutations Identify Thp3 (Ypr045c)-Csn12 as a Protein Complex Involved in Transcription Elongation. Molecular and Cellular Biology, 2011, 31, 674-685.	1.1	14
117	The Rad50 coiled-coil domain is indispensable for Mre11 complex functions. Nature Structural and Molecular Biology, 2011, 18, 1124-1131.	3.6	88
118	Genome Instability and Transcription Elongation Impairment in Human Cells Depleted of THO/TREX. PLoS Genetics, 2011, 7, e1002386.	1.5	194
119	AID Induces Double-Strand Breaks at Immunoglobulin Switch Regions and c-MYC Causing Chromosomal Translocations in Yeast THO Mutants. PLoS Genetics, 2011, 7, e1002009.	1.5	39
120	Genetic and Molecular Analysis of Mitotic Recombination in Saccharomyces cerevisiae. Methods in Molecular Biology, 2011, 745, 151-172.	0.4	16
121	The THO complex as a key mRNP biogenesis factor in development and cell differentiation. Journal of Biology, 2010, 9, 6.	2.7	21
122	Replication fork breakage and re-start: New insights into Rad3/XPD-associated deficiencies. Cell Cycle, 2010, 9, 3030-3034.	1.3	18
123	A Postincision-Deficient TFIIH Causes Replication Fork Breakage and Uncovers Alternative Rad51- or Pol32-Mediated Restart Mechanisms. Molecular Cell, 2010, 37, 690-701.	4.5	59
124	The interface between transcription and mRNP export: From THO to THSC/TREX-2. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 533-538.	0.9	78
125	R-loops do not accumulate in transcription-defective hpr1-101 mutants: implications for the functional role of THO/TREX. Nucleic Acids Research, 2009, 37, 4315-4321.	6.5	10
126	Chromosomal Translocations Caused by Either Pol32-Dependent or Pol32-Independent Triparental Break-Induced Replication. Molecular and Cellular Biology, 2009, 29, 5441-5454.	1.1	49

#	Article	IF	CITATIONS
127	Transcription at the proximity of the nuclear pore: A role for the THP1-SAC3-SUS1-CDC31 (THSC) complex. RNA Biology, 2009, 6, 145-148.	1.5	16
128	The S-Phase Checkpoint Is Required To Respond to R-Loops Accumulated in THO Mutants. Molecular and Cellular Biology, 2009, 29, 5203-5213.	1.1	76
129	Genome-Wide Analysis of Factors Affecting Transcription Elongation and DNA Repair: A New Role for PAF and Ccr4-Not in Transcription-Coupled Repair. PLoS Genetics, 2009, 5, e1000364.	1.5	81
130	Sem1 is a functional component of the nuclear pore complex–associated messenger RNA export machinery. Journal of Cell Biology, 2009, 184, 833-846.	2.3	96
131	The Stress-activated Protein Kinase Hog1 Mediates S Phase Delay in Response to Osmostress. Molecular Biology of the Cell, 2009, 20, 3572-3582.	0.9	57
132	The Dot1 Histone Methyltransferase and the Rad9 Checkpoint Adaptor Contribute to Cohesin-Dependent Double-Strand Break Repair by Sister Chromatid Recombination in <i>Saccharomyces cerevisiae</i> . Genetics, 2009, 182, 437-446.	1.2	57
133	Stimulation of direct-repeat recombination by RNA polymerase III transcription. DNA Repair, 2009, 8, 620-626.	1.3	23
134	DNA Repair in Mammalian Cells. Cellular and Molecular Life Sciences, 2009, 66, 1039-1056.	2.4	266
135	Methods to Study Transcription-Coupled Repair in Chromatin. Methods in Molecular Biology, 2009, 523, 141-159.	0.4	12
136	Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma, 2008, 117, 319-331.	1.0	94
137	Different physiological relevance of yeast THO/TREX subunits in gene expression and genome integrity. Molecular Genetics and Genomics, 2008, 279, 123-132.	1.0	32
138	A reduction in RNA polymerase II initiation rate suppresses hyper-recombination and transcription-elongation impairment of THO mutants. Molecular Genetics and Genomics, 2008, 280, 327-336.	1.0	11
139	CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature, 2008, 455, 689-692.	13.7	402
140	Genome instability: a mechanistic view of its causes and consequences. Nature Reviews Genetics, 2008, 9, 204-217.	7.7	648
141	A Novel Class of mRNA-containing Cytoplasmic Granules Are Produced in Response to UV-Irradiation. Molecular Biology of the Cell, 2008, 19, 4980-4992.	0.9	31
142	The THP1-SAC3-SUS1-CDC31 Complex Works in Transcription Elongation-mRNA Export Preventing RNA-mediated Genome Instability. Molecular Biology of the Cell, 2008, 19, 4310-4318.	0.9	128
143	Different genetic requirements for repair of replication-born double-strand breaks by sister-chromatid recombination and break-induced replication. Nucleic Acids Research, 2007, 35, 6560-6570.	6.5	22
144	Nucleoporins Prevent DNA Damage Accumulation by Modulating Ulp1-dependent Sumoylation Processes. Molecular Biology of the Cell, 2007, 18, 2912-2923.	0.9	129

#	Article	IF	CITATIONS
145	SMC Proteins, New Players in the Maintenance of Genomic Stability. Cell Cycle, 2007, 6, 914-918.	1.3	16
146	Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8409-8414.	3.3	98
147	Impairment of transcription elongation by R-loops in vitro. Biochemical and Biophysical Research Communications, 2007, 360, 428-432.	1.0	70
148	A new connection of mRNP biogenesis and export with transcription-coupled repair. Nucleic Acids Research, 2007, 35, 3893-3906.	6.5	33
149	Sister chromatid recombination. Topics in Current Genetics, 2007, , 221-249.	0.7	1
150	DNA repair: From molecular mechanism to human disease. DNA Repair, 2006, 5, 986-996.	1.3	162
151	Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nature Cell Biology, 2006, 8, 1032-1034.	4.6	170
152	Doubleâ€strand breaks arising by replication through a nick are repaired by cohesinâ€dependent sisterâ€chromatid exchange. EMBO Reports, 2006, 7, 919-926.	2.0	132
153	Tho1, a Novel hnRNP, and Sub2 Provide Alternative Pathways for mRNP Biogenesis in Yeast THO Mutants. Molecular and Cellular Biology, 2006, 26, 4387-4398.	1.1	41
154	An hpr1 Point Mutation That Impairs Transcription and mRNP Biogenesis without Increasing Recombination. Molecular and Cellular Biology, 2006, 26, 7451-7465.	1.1	36
155	Replication Fork Progression Is Impaired by Transcription in Hyperrecombinant Yeast Cells Lacking a Functional THO Complex. Molecular and Cellular Biology, 2006, 26, 3327-3334.	1.1	143
156	Sister chromatid recombination. , 2006, , 221-249.		1
157	mRNA processing and genomic instability. Nature Structural and Molecular Biology, 2005, 12, 737-738.	3.6	40
158	Impairment of replication fork progression mediates RNA pollI transcription-associated recombination. EMBO Journal, 2005, 24, 1267-1276.	3.5	251
159	Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Current Opinion in Cell Biology, 2005, 17, 242-250.	2.6	148
160	Partial Depletion of Histone H4 Increases Homologous Recombination-Mediated Genetic Instability. Molecular and Cellular Biology, 2005, 25, 1526-1536.	1.1	67
161	Interdependence between Transcription and mRNP Processing and Export, and Its Impact on Genetic Stability. Molecular Cell, 2005, 18, 711-722.	4.5	105
162	A Novel Yeast Mutation, rad52-L89F, Causes a Specific Defect in Rad51-Independent Recombination That Correlates With a Reduced Ability of Rad52-L89F to Interact With Rad59. Genetics, 2004, 168, 553-557.	1.2	21

#	Article	IF	CITATIONS
163	Molecular evidence indicating that the yeast PAF complex is required for transcription elongation. EMBO Reports, 2004, 5, 47-53.	2.0	123
164	The absence of the yeast chromatin assembly factor Asf1 increases genomic instability and sister chromatid exchange. EMBO Reports, 2004, 5, 497-502.	2.0	100
165	A Unified Nomenclature for Protein Subunits of Mediator Complexes Linking Transcriptional Regulators to RNA Polymerase II. Molecular Cell, 2004, 14, 553-557.	4.5	230
166	Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO Journal, 2003, 22, 612-620.	3.5	84
167	Mitotic recombination in Saccharomyces cerevisiae. Current Genetics, 2003, 42, 185-198.	0.8	96
168	Control of cross-over by single-strand DNA resection. Trends in Genetics, 2003, 19, 428-431.	2.9	32
169	Relationship between C+C content, ORF-length and mRNA concentration inSaccharomyces cerevisiae. Yeast, 2003, 20, 703-711.	0.8	40
170	Cotranscriptionally Formed DNA:RNA Hybrids Mediate Transcription Elongation Impairment and Transcription-Associated Recombination. Molecular Cell, 2003, 12, 711-721.	4.5	630
171	Molecular Evidence That the Eukaryotic THO/TREX Complex Is Required for Efficient Transcription Elongation. Journal of Biological Chemistry, 2003, 278, 39037-39043.	1.6	92
172	Nab2p and the Thp1p-Sac3p Complex Functionally Interact at the Interface between Transcription and mRNA Metabolism. Journal of Biological Chemistry, 2003, 278, 24225-24232.	1.6	89
173	Equal Sister Chromatid Exchange Is a Major Mechanism of Double-Strand Break Repair in Yeast. Molecular Cell, 2003, 11, 1661-1671.	4.5	90
174	Defective nucleotide excision repair in yeast hpr1 and tho2 mutants. Nucleic Acids Research, 2002, 30, 2193-2201.	6.5	17
175	Characterization of two highly similar rad51 homologs of Physcomitrella patens. Journal of Molecular Biology, 2002, 316, 35-49.	2.0	35
176	TREX is a conserved complex coupling transcription with messenger RNA export. Nature, 2002, 417, 304-308.	13.7	736
177	The connection between transcription and genomic instability. EMBO Journal, 2002, 21, 195-201.	3.5	291
178	The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO Journal, 2002, 21, 3526-3535.	3.5	232
179	Transcription and Double-Strand Breaks Induce Similar Mitotic Recombination Events in <i>Saccharomyces cerevisiae</i> . Genetics, 2002, 162, 603-614.	1.2	63
180	Double-strand break repair: are Rad51/RecA–DNA joints barriers to DNA replication?. Trends in Genetics, 2001, 17, 318-321.	2.9	37

#	Article	IF	CITATIONS
181	Hpr1 Is Preferentially Required for Transcription of Either Long or G+C-Rich DNA Sequences in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2001, 21, 7054-7064.	1.1	106
182	A New Hyperrecombination Mutation Identifies a Novel Yeast Gene, <i>THP1</i> , Connecting Transcription Elongation With Mitotic Recombination. Genetics, 2001, 157, 79-89.	1.2	60
183	Yeast <i>spt6-140</i> Mutation, Affecting Chromatin and Transcription, Preferentially Increases Recombination in Which Rad51p-Mediated Strand Exchange Is Dispensable. Genetics, 2001, 158, 597-611.	1.2	40
184	Mitotic recombination in yeast: elements controlling its incidence. Yeast, 2000, 16, 731-754.	0.8	78
185	Susceptibility to drug-induced apoptosis correlates with differential modulation of Bad, Bcl-2 and Bcl-xL protein levels. Cell Death and Differentiation, 2000, 7, 574-586.	5.0	113
186	A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO Journal, 2000, 19, 5824-5834.	3.5	267
187	Construction and genetic analysis ofS. cerevisiae deletants of six novel ORFs from chromosome II. , 1999, 15, 955-961.		3
188	A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination. EMBO Journal, 1998, 17, 4859-4872.	3.5	133
189	Genetic stability and DNA rearrangements associated with a 2 × 1.1-Kb perfect palindrome in Escheric coli. Molecular Genetics and Genomics, 1998, 259, 639-644.	hia 2.4	12
190	Recombination between DNA repeats in yeast hpr1Delta cells is linked to transcription elongation. EMBO Journal, 1997, 16, 2826-2835.	3.5	94
191	The yeast <i>HPR1</i> gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes and Development, 1997, 11, 3459-3470.	2.7	156
192	The Yeast <i>HRS1</i> Gene Is Involved in Positive and Negative Regulation of Transcription and Shows Genetic Characteristics Similar to <i>SIN4</i> and <i>GAL11</i> . Genetics, 1997, 147, 1585-1594.	1.2	52
193	Differential intrachromosomal hyper-recombination phenotype of spt4 and spt6 mutants of S. cerevisiae. Current Genetics, 1996, 30, 101-106.	0.8	39
194	The Yeast <i>HRS1</i> Gene Encodes a Polyglutamine-Rich Nuclear Protein Required for Spontaneous and <i>hpr1</i> -Induced Deletions Between Direct Repeats. Genetics, 1996, 142, 705-716.	1.2	37
195	Mutations in the Yeast SRB2 General Transcription Factor Suppress <i>hpr1</i> -Induced Recombination and Show Defects in DNA Repair. Genetics, 1996, 143, 1533-1542.	1.2	29
196	Genetic evidence for different RAD52-dependent intrachromosomal recombination pathways in Saccharomyces cerevisiae. Current Genetics, 1995, 27, 298-305.	0.8	35
197	New in-vivo cloning methods by homologous recombination in yeast. Current Genetics, 1994, 25, 180-183.	0.8	17
198	Increase in incidence of chromosome instability and non-conservative recombination between repeats in Saccharomyces cerevisiae hpr11°° strains. Molecular Genetics and Genomics, 1994, 245, 224-236.	2.4	40

#	Article	IF	CITATIONS
199	High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1990, 231, 177-186.	0.4	140
200	Molecular analysis ofRGP1, a new yeast gene required for proper mitotic growth. Nucleic Acids Research, 1990, 18, 1064-1064.	6.5	4
201	Nucleotide sequence and characterization of temperature-sensitive pol1 mutants of Saccharomyces cerevisiae. Gene, 1990, 90, 99-104.	1.0	54
202	Synergistic effects of ethanol and temperature on yeast mitochondria. Current Microbiology, 1989, 18, 179-188.	1.0	14
203	The phosphofructokinase genes of yeast evolved from two duplication events. Gene, 1989, 78, 309-321.	1.0	94
204	Relationship between growth, fermentation, and respiration rates inSaccharomyces cerevisiae: A study based on the analysis of the yield Ypx. Biotechnology and Bioengineering, 1988, 32, 240-244.	1.7	13
205	Mitotic gene conversion of large DNA heterologies in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1988, 211, 455-458.	2.4	3
206	Mutations suppressing the effects of a deletion of the Phosphoglucose isomerase gene PGI1 in Saccharomyces cerevisiae. Current Genetics, 1987, 11, 429-434.	0.8	19
207	Ethanol-sensitive mutants of Saccharomyces cerevisiae. Archives of Microbiology, 1986, 143, 337-344.	1.0	39
208	Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1986, 204, 310-316.	2.4	56
209	Isolation and molecular analysis of the phosphoglucose isomerase structural gene of Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1986, 202, 83-89.	2.4	55
210	Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae. Archives of Microbiology, 1985, 142, 389-392.	1.0	56
211	Specific gene probes as tools in yeast taxonomy. Current Genetics, 1985, 10, 103-110.	0.8	35
212	Instability of Saccharomyces cerevisiae heterokaryons. Current Genetics, 1984, 8, 345-352.	0.8	2
213	Selection of Wine Yeasts for Growth and Fermentation in the Presence of Ethanol and Sucrose. Applied and Environmental Microbiology, 1983, 45, 1429-1436.	1.4	68
214	Elongation Factor TFIIS Prevents Transcription Stress and R-Loop Accumulation to Maintain Genome Stability. SSRN Electronic Journal, 0, , .	0.4	0