Xuetao Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9470618/publications.pdf Version: 2024-02-01

XUETAO SHL

#	Article	IF	CITATIONS
1	The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon, 2015, 95, 1039-1050.	10.3	213
2	Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Advanced Composites and Hybrid Materials, 2021, 4, 36-50.	21.1	152
3	Tissue-Engineered Trachea Consisting of Electrospun Patterned sc-PLA/GO- <i>g</i> -IL Fibrous Membranes with Antibacterial Property and 3D-Printed Skeletons with Elasticity. Biomacromolecules, 2019, 20, 1765-1776.	5.4	104
4	Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid). Molecules, 2015, 20, 1579-1593.	3.8	96
5	Highly expansive, thermally insulating epoxy/Ag nanosheet composite foam for electromagnetic interference shielding. Chemical Engineering Journal, 2019, 372, 191-202.	12.7	86
6	Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent. Journal of Cellular Plastics, 2014, 50, 55-79.	2.4	84
7	Significant Reduction of Interfacial Thermal Resistance and Phonon Scattering in Graphene/Polyimide Thermally Conductive Composite Films for Thermal Management. Research, 2021, 2021, 8438614.	5.7	82
8	Design of a self-healing and flame-retardant cyclotriphosphazene-based epoxy vitrimer. Journal of Materials Science, 2018, 53, 7030-7047.	3.7	77
9	Study on foamability and electromagnetic interference shielding effectiveness of supercritical CO2 foaming epoxy/rubber/MWCNTs composite. Composites Part A: Applied Science and Manufacturing, 2019, 121, 64-73.	7.6	77
10	Introduction of stereocomplex crystallites of PLA for the solid and microcellular poly(lactide)/poly(butylene adipate- <i>co</i> -terephthalate) blends. RSC Advances, 2018, 8, 11850-11861.	3.6	50
11	Formation, structure and promoting crystallization capacity of stereocomplex crystallite network in the poly(lactide) blends based on linear PLLA and PDLA with different structures. Polymer, 2016, 92, 210-221.	3.8	48
12	Microcellular foaming of polylactide and poly(butylene adipateâ€coâ€ŧerphathalate) blends and their CaCO ₃ reinforced nanocomposites using supercritical carbon dioxide. Polymers for Advanced Technologies, 2016, 27, 550-560.	3.2	44
13	rGO/MXene sandwich-structured film at spunlace non-woven fabric substrate: Application to EMI shielding and electrical heating. Journal of Colloid and Interface Science, 2022, 614, 194-204.	9.4	44
14	Influence of PLA stereocomplex crystals and thermal treatment temperature on the rheology and crystallization behavior of asymmetric poly(L-Lactide)/poly(D-lactide) blends. Journal of Polymer Research, 2018, 25, 1.	2.4	37
15	Multilevel structural stereocomplex polylactic acid/collagen membranes by pattern electrospinning for tissue engineering. Polymer, 2018, 156, 250-260.	3.8	35
16	Nanoengineered electrospun fibers and their biomedical applications: a review. Nanocomposites, 2021, 7, 1-34.	4.2	35
17	Preparation of open-porous stereocomplex PLA/PBAT scaffolds and correlation between their morphology, mechanical behavior, and cell compatibility. RSC Advances, 2018, 8, 12933-12943.	3.6	30

18 Crystallization, rheology behavior, and antibacterial application of graphene oxide- graft -poly (I) Tj ETQq000 rgBT/Overlock 10 Tf 50 6

Χυέταο Shi

#	Article	IF	CITATIONS
19	Rheology and crystallization behavior of PLLA/TiO ₂ â€gâ€PDLA composites. Polymers for Advanced Technologies, 2015, 26, 528-537.	3.2	29
20	Synthesis and properties of poly(lactide)/poly(ε-caprolactone) multiblock supramolecular polymers bonded by the self-complementary quadruple hydrogen bonding. Polymer, 2017, 121, 124-136.	3.8	22
21	Preparation and adsorption properties of a novel superabsorbent based on multiwalled carbon nanotubes-xylan composite and poly(methacrylic acid) for methylene blue from aqueous solution. Polymer Composites, 2014, 35, 1516-1528.	4.6	21
22	Investigation of poly(lactide) stereocomplexation between linear poly(<scp>L</scp> â€lactide) and <scp>PDLAâ€PEGâ€PDLA</scp> triâ€block copolymer. Polymer International, 2015, 64, 1399-1407.	3.1	21
23	Synthesis, stereocomplex crystallization and properties of poly(<scp>l</scp> ″actide)/fourâ€armed star poly(<scp>d</scp> ″actide) functionalized carbon nanotubes nanocomposites. Polymers for Advanced Technologies, 2015, 26, 223-233.	3.2	20
24	Competitive Stereocomplexation and Homocrystallization Behaviors in the Poly(lactide) Blends of PLLA and PDLA-PEG-PDLA with Controlled Block Length. Polymers, 2017, 9, 107.	4.5	20
25	Influence of Polylactide (PLA) Stereocomplexation on the Microstructure of PLA/PBS Blends and the Cell Morphology of Their Microcellular Foams. Polymers, 2020, 12, 2362.	4.5	20
26	Origami meets electrospinning: a new strategy for 3D nanofiber scaffolds. Bio-Design and Manufacturing, 2018, 1, 254-264.	7.7	19
27	Assembling of electrospun meshes into three-dimensional porous scaffolds for bone repair. Biofabrication, 2017, 9, 015018.	7.1	18
28	Effect of poly(butylenes succinate) on the microcellular foaming of polylactide using supercritical carbon dioxide. Journal of Polymer Research, 2018, 25, 1.	2.4	18
29	Fabrication of rigid polyimide foams via thermal foaming of nadimide-end-capped polyester-amine precursor. Polymer Bulletin, 2020, 77, 5899-5912.	3.3	17
30	Synthesis and properties of biodegradable supramolecular polymers based on polylactide- <i>block</i> -poly(<i>Ĩ</i> -valerolactone)- <i>block</i> -polylactide triblock copolymers. Polymer International, 2017, 66, 1487-1497.	3.1	16
31	Microcellular foams of glass-fiber reinforced poly(phenylene sulfide) composites generated using supercritical carbon dioxide. Polymer Composites, 2016, 37, 2527-2540.	4.6	15
32	MMP-2 sensitive poly(malic acid) micelles stabilized by π–π stacking enable high drug loading capacity. Journal of Materials Chemistry B, 2020, 8, 8527-8535.	5.8	14
33	3Dâ€Printed Polyurethane Tissueâ€Engineering Scaffold with Hierarchical Microcellular Foam Structure and Antibacterial Properties. Advanced Engineering Materials, 2022, 24, .	3.5	13
34	Fully bioâ€based poly(É›â€capolactone)/poly(lactide) alternating multiblock supramolecular polymers: Synthesis, crystallization behavior, and properties. Journal of Applied Polymer Science, 2017, 134, 45575.	2.6	12
35	Poly(I -lactide)/four-armed star poly(I -lactide)-grafted multiwalled carbon nanotubes nanocomposites: Preparation, rheology, crystallization, and mechanical properties. Polymer Composites, 2016, 37, 2744-2755.	4.6	8
36	High thermal conductivity of liquid crystalline monomerâ€poly (vinyl alcohol) dispersion films containing microscopicâ€ordered structure. Journal of Applied Polymer Science, 2021, 138, 49791.	2.6	7

#	Article	IF	CITATIONS
37	Crystallization and Properties of Poly(lactide)/Poly(l̃´-valerolactone) Alternating Supramolecular Copolymers Adjusted by Stereocomplexation. ACS Omega, 2019, 4, 11145-11151.	3.5	5
38	Synthesis and characterization of <scp>F</scp> e ₃ <scp>O</scp> ₄ /poly(lactideâ€ <i>co</i> â€glycolide) composite and its coating effects on magnesium alloy. Polymer Composites, 2016, 37, 1369-1374.	4.6	3