
Megan T Valentine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9470589/publications.pdf Version: 2024-02-01

MECAN T VALENTINE

#	Article	IF	CITATIONS
1	Network structure influences bulk modulus of nearly incompressible filled silicone elastomers. Extreme Mechanics Letters, 2022, 52, 101616.	2.0	5
2	Role of Material Composition in Photothermal Actuation of DASA-Based Polymers. ACS Applied Polymer Materials, 2022, 4, 141-149.	2.0	13
3	High-throughput microscopy to determine morphology, microrheology, and phase boundaries applied to phase separating coacervates. Soft Matter, 2022, 18, 3063-3075.	1.2	8
4	The living interface between synthetic biology and biomaterial design. Nature Materials, 2022, 21, 390-397.	13.3	68
5	Rational mechanochemical design of Diels–Alder crosslinked biocompatible hydrogels with enhanced properties. Materials Horizons, 2022, 9, 1947-1953.	6.4	13
6	Vascular Aging in the Invertebrate Chordate, Botryllus schlosseri. Frontiers in Molecular Biosciences, 2021, 8, 626827.	1.6	4
7	Tough Multimaterial Interfaces through Wavelength-Selective 3D Printing. ACS Applied Materials & Interfaces, 2021, 13, 22065-22072.	4.0	28
8	Design and characterization of a 3D-printed staggered herringbone mixer. BioTechniques, 2021, 70, 285-289.	0.8	8
9	Influence of Polarity Change and Photophysical Effects on Photosurfactant-Driven Wetting. Langmuir, 2021, 37, 9939-9951.	1.6	7
10	Tuning the response of fluid filled hydrogel core–shell structures. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104605.	1.5	2
11	Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 2021, 104, 034610.	0.8	8
12	Three-Dimensional Photochemical Printing of Thermally Activated Polymer Foams. ACS Applied Polymer Materials, 2021, 3, 4984-4991.	2.0	9
13	Suction-Controlled Detachment of Mushroom-Shaped Adhesive Structures. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	3
14	On-Demand Manufacturing Capabilities of Mussels Enable Robust Adhesion to Geometrically Complex Surfaces. ACS Biomaterials Science and Engineering, 2021, 7, 5099-5106.	2.6	1
15	Non-destructive quantification of anaerobic gut fungi and methanogens in co-culture reveals increased fungal growth rate and changes in metabolic flux relative to mono-culture. Microbial Cell Factories, 2021, 20, 199.	1.9	7
16	Tunable Photothermal Actuation Enabled by Photoswitching of Donor–Acceptor Stenhouse Adducts. ACS Applied Materials & Interfaces, 2020, 12, 54075-54082.	4.0	31
17	Inertial flow focusing: a case study in optimizing cellular trajectory through a microfluidic MEMS device for timing-critical applications. Biomedical Microdevices, 2020, 22, 52.	1.4	2
18	Controlled Single-Cell Compression With a High-Throughput MEMS Actuator. Journal of Microelectromechanical Systems, 2020, 29, 790-796.	1.7	2

MEGAN T VALENTINE

#	Article	IF	CITATIONS
19	Effects of sea water pH on marine mussel plaque maturation. Soft Matter, 2020, 16, 9339-9346.	1.2	11
20	Tailoring the Toughness of Elastomers by Incorporating Ionic Cross-Linking. Macromolecules, 2020, 53, 4099-4109.	2.2	20
21	3D-printable cell crowding device enables imaging of live cells in compression. BioTechniques, 2020, 68, 275-278.	0.8	1
22	Characterizing the cellular architecture of dynamically remodeling vascular tissue using 3-D image analysis and virtual reconstruction. Molecular Biology of the Cell, 2020, 31, 1714-1725.	0.9	6
23	Investigating Cellular Response to Impact With a Microfluidic MEMS Device. Journal of Microelectromechanical Systems, 2020, 29, 14-24.	1.7	4
24	Rapid analysis of cell-generated forces within a multicellular aggregate using microsphere-based traction force microscopy. Soft Matter, 2020, 16, 4192-4199.	1.2	7
25	Engineering crack tortuosity in printed polymer–polymer composites through ordered pores. Materials Horizons, 2020, 7, 1854-1860.	6.4	7
26	Self-regulating photochemical Rayleigh-Bénard convection using a highly-absorbing organic photoswitch. Nature Communications, 2020, 11, 2599.	5.8	26
27	Force distribution and multiscale mechanics in the mussel byssus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190202.	1.8	17
28	Toughening elastomers using mussel-inspired iron-catechol complexes. Science, 2017, 358, 502-505.	6.0	505
29	Influence of multi-cycle loading on the structure and mechanics of marine mussel plaques. Soft Matter, 2017, 13, 7381-7388.	1.2	12
30	Significant Performance Enhancement of Polymer Resins by Bioinspired Dynamic Bonding. Advanced Materials, 2017, 29, 1703026.	11.1	63
31	In vivo manipulation of the extracellular matrix induces vascular regression in a basal chordate. Molecular Biology of the Cell, 2017, 28, 1883-1893.	0.9	9
32	Simple peptide coacervates adapted for rapid pressure-sensitive wet adhesion. Soft Matter, 2017, 13, 9122-9131.	1.2	29
33	Improved calibration of the nonlinear regime of a single-beam gradient optical trap. Optics Letters, 2016, 41, 2386.	1.7	1
34	The + <scp>TIP</scp> coordinating protein <scp>EB</scp> 1 is highly dynamic and diffusive on microtubules, sensitive to <scp>GTP</scp> analog, ionic strength, and <scp>EB</scp> 1 concentration. Cytoskeleton, 2016, 73, 23-34.	1.0	13
35	Effects of wild type tau and disease-linked tau mutations on microtubule organization and intracellular trafficking. Journal of Biomechanics, 2016, 49, 1280-1285.	0.9	7
36	The microscopic network structure of mussel (<i>Mytilus</i>) adhesive plaques. Journal of the Royal Society Interface, 2015, 12, 20150827.	1.5	36

MEGAN T VALENTINE

#	Article	IF	CITATIONS
37	Dynamics of mussel plaque detachment. Soft Matter, 2015, 11, 6832-6839.	1.2	59
38	Molecular control of stress transmission in the microtubule cytoskeleton. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3015-3024.	1.9	21
39	Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications. Review of Scientific Instruments, 2015, 86, 053704.	0.6	9
40	Bond breaking dynamics in semiflexible networks under load. Soft Matter, 2015, 11, 4899-4911.	1.2	10
41	Mechanical effects of <scp>EB</scp> 1 on microtubules depend on <scp>GTP</scp> hydrolysis state and presence of paclitaxel. Cytoskeleton, 2014, 71, 530-541.	1.0	16
42	Tau Proteins Harboring Neurodegeneration-Linked Mutations Impair Kinesin Translocation in vitro. Journal of Alzheimer's Disease, 2014, 39, 301-314.	1.2	12
43	Determining the Structure–Mechanics Relationships of Dense Microtubule Networks with Confocal Microscopy and Magnetic Tweezers-Based Microrheology. Methods in Cell Biology, 2013, 115, 75-96.	0.5	6
44	Force spectroscopy of complex biopolymers with heterogeneous elasticity. Soft Matter, 2013, 9, 772-778.	1.2	6
45	Microrheology of highly crosslinked microtubule networks is dominated by force-induced crosslinker unbinding. Soft Matter, 2013, 9, 383-393.	1.2	39
46	Mechanical and functional properties of epothiloneâ€stabilized microtubules. Cytoskeleton, 2013, 70, 74-84.	1.0	12
47	Microscale Manipulation by NdFeB-Based Magnetic Tweezers: Applications to Microrheology. , 2013, , .		0
48	Ring-shaped NdFeB-based magnetic tweezers enables oscillatory microrheology measurements. Applied Physics Letters, 2012, 100, .	1.5	12
49	Direct correlation between creep compliance and deformation in entangled and sparsely crosslinked microtubule networks. Soft Matter, 2012, 8, 1776-1784.	1.2	20
50	Spectral Analysis Methods for the Robust Measurement of the Flexural Rigidity of Biopolymers. Biophysical Journal, 2012, 102, 1144-1153.	0.2	30
51	High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments. Review of Scientific Instruments, 2012, 83, 053905.	0.6	17
52	Portable magnetic tweezers device enables visualization of the three-dimensional microscale deformation of soft biological materials. BioTechniques, 2011, 51, 29-34.	0.8	17
53	Force and Premature Binding of ADP Can Regulate the Processivity of Individual Eg5 Dimers. Biophysical Journal, 2009, 97, 1671-1677.	0.2	32

54 Single-Molecule Manipulation Using Optical Traps. , 2009, , 341.

Megan T Valentine

#	Article	IF	CITATIONS
55	Precision steering of an optical trap by electro-optic deflection. Optics Letters, 2008, 33, 599.	1.7	64
56	To step or not to step? How biochemistry and mechanics influence processivity in Kinesin and Eg5. Current Opinion in Cell Biology, 2007, 19, 75-81.	2.6	71
57	Eg5 steps it up!. Cell Division, 2006, 1, 31.	1.1	62
58	Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nature Cell Biology, 2006, 8, 470-476.	4.6	243
59	Mechanical Properties of Xenopus Egg Cytoplasmic Extracts. Biophysical Journal, 2005, 88, 680-689.	0.2	82
60	Anomalous Diffusion Probes Microstructure Dynamics of Entangled F-Actin Networks. Physical Review Letters, 2004, 92, 178101.	2.9	515
61	Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements of Biomaterials. Biophysical Journal, 2004, 86, 4004-4014.	0.2	233
62	Microscopic origin of light scattering in tissue. Applied Optics, 2003, 42, 2871.	2.1	26
63	Measuring the mechanical stress induced by an expanding multicellular tumor system: a case study. Experimental Cell Research, 2003, 289, 58-66.	1.2	91
64	Microrheology of Entangled F-Actin Solutions. Physical Review Letters, 2003, 91, 158302.	2.9	291
65	Microscope-based static light-scattering instrument. Optics Letters, 2001, 26, 890.	1.7	34
66	Two-Point Microrheology of Inhomogeneous Soft Materials. Physical Review Letters, 2000, 85, 888-891.	2.9	581
67	Forces on a colloidal particle in a polymer solution: a study using optical tweezers. Journal of Physics Condensed Matter, 1996, 8, 9477-9482.	0.7	86
68	Strength of fluid-filled soft composites across the elastofracture length. Soft Matter, 0, , .	1.2	0