
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9470484/publications.pdf Version: 2024-02-01

DETER K TOOD

#	Article	IF	CITATIONS
1	Guillainâ€Barré Syndrome After COVIDâ€19 mRNA Vaccination in a Liver Transplantation Recipient With Favorable Treatment Response. Liver Transplantation, 2022, 28, 134-137.	2.4	19
2	Mechanistic convergence across initiation sites for RAN translation in fragile X associated tremor ataxia syndrome. Human Molecular Genetics, 2022, 31, 2317-2332.	2.9	7
3	Non-canonical initiation factors modulate repeat-associated non-AUG translation. Human Molecular Genetics, 2022, 31, 2521-2534.	2.9	19
4	Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell, 2022, 40, 185-200.e6.	16.8	97
5	Ribosomal quality control in repeatâ€associated nonâ€AUG translation of GC rich repeats. FASEB Journal, 2022, 36, .	0.5	0
6	Identification of <i>PSMB5</i> as a genetic modifier of fragile X–associated tremor/ataxia syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
7	Translational control in aging and neurodegeneration. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1628.	6.4	17
8	Neuropathology of <i>FMR1</i> -premutation carriers presenting with dementia and neuropsychiatric symptoms. Brain Communications, 2021, 3, fcab007.	3.3	7
9	Enhanced detection of expanded repeat mRNA foci with hybridization chain reaction. Acta Neuropathologica Communications, 2021, 9, 73.	5.2	9
10	Molecular mechanisms underlying nucleotide repeat expansion disorders. Nature Reviews Molecular Cell Biology, 2021, 22, 589-607.	37.0	151
11	Mild Neurological Signs in FMR1 Premutation Women in an Unselected Communityâ€Based Cohort. Movement Disorders, 2021, 36, 2378-2386.	3.9	3
12	Human oncoprotein 5MP suppresses general and repeat-associated non-AUG translation via eIF3 by a common mechanism. Cell Reports, 2021, 36, 109376.	6.4	16
13	The RNA helicase DHX36–G4R1 modulates C9orf72 GGGGCC hexanucleotide repeat–associated translation. Journal of Biological Chemistry, 2021, 297, 100914.	3.4	24
14	SRSF protein kinase 1 modulates RAN translation and suppresses CGG repeat toxicity. EMBO Molecular Medicine, 2021, 13, e14163.	6.9	17
15	A repeating theme in amyotrophic lateral sclerosis genetics. Neurology, 2020, 95, 1080-1081.	1.1	0
16	The carboxyl termini of RAN translated GGGGCC nucleotide repeat expansions modulate toxicity in models of ALS/FTD. Acta Neuropathologica Communications, 2020, 8, 122.	5.2	15
17	Genetic testing utilization for patients with neurologic disease and the limitations of claims data. Neurology: Genetics, 2020, 6, e405.	1.9	4
18	Neuropathology of FMR1â€premutation carriers presenting with dementia and neuropsychiatric symptoms. Alzheimer's and Dementia, 2020, 16, e044916.	0.8	0

#	Article	IF	CITATIONS
19	A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis. Nature Neuroscience, 2020, 23, 386-397.	14.8	48
20	High-throughput screening yields several small-molecule inhibitors of repeat-associated non-AUG translation. Journal of Biological Chemistry, 2019, 294, 18624-18638.	3.4	32
21	Fragile X-associated tremor ataxia syndrome with co-occurrent progressive supranuclear palsy-like neuropathology. Acta Neuropathologica Communications, 2019, 7, 158.	5.2	8
22	Neuropathology of RAN translation proteins in fragile X-associated tremor/ataxia syndrome. Acta Neuropathologica Communications, 2019, 7, 152.	5.2	39
23	New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiology of Disease, 2019, 130, 104515.	4.4	60
24	Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. Genes and Development, 2019, 33, 871-885.	5.9	60
25	Translation of upstream open reading frames in a model of neuronal differentiation. BMC Genomics, 2019, 20, 391.	2.8	30
26	<scp>DDX</scp> 3X and specific initiation factors modulate <i> <scp>FMR</scp> 1 </i> repeatâ€associated nonâ€AUGâ€initiated translation. EMBO Reports, 2019, 20, e47498.	4.5	53
27	Repeat-associated non-AUG (RAN) translation and other molecular mechanisms in Fragile X Tremor Ataxia Syndrome. Brain Research, 2018, 1693, 43-54.	2.2	63
28	Targeted Reactivation of FMR1 Transcription in Fragile X Syndrome Embryonic Stem Cells. Frontiers in Molecular Neuroscience, 2018, 11, 282.	2.9	41
29	Translation of Expanded CGG Repeats into FMRpolyG Is Pathogenic and May Contribute to Fragile X Tremor Ataxia Syndrome. Neuron, 2017, 93, 331-347.	8.1	194
30	RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nature Communications, 2017, 8, 2005.	12.8	172
31	[S5–01–04]: EXPLOITING RAN TRANSLATIONâ€SPECIFIC MECHANISMS AS A THERAPEUTIC APPROACH ACR MULTIPLE NEURODEGENERATIVE DISEASES. Alzheimer's and Dementia, 2017, 13, P1444.	OSS 0.8	0
32	Screening for novel hexanucleotide repeat expansions at ALS- and FTD-associated loci. Neurology: Genetics, 2016, 2, e71.	1.9	6
33	CGG Repeat-Associated Non-AUG Translation Utilizes a Cap-Dependent Scanning Mechanism of Initiation to Produce Toxic Proteins. Molecular Cell, 2016, 62, 314-322.	9.7	152
34	RAN translation—What makes it run?. Brain Research, 2016, 1647, 30-42.	2.2	89
35	Small Molecule Recognition and Tools to Study Modulation of r(CGG) ^{exp} in Fragile X-Associated Tremor Ataxia Syndrome. ACS Chemical Biology, 2016, 11, 2456-2465.	3.4	44

The Molecular Biology of Premutation Expanded Alleles. , 2016, , 101-127.

0

#	Article	IF	CITATIONS
37	Repeatâ€associated nonâ€ <scp>AUG</scp> translation from antisense <scp>CCG</scp> repeats in fragile <scp>X</scp> tremor/ataxia syndrome. Annals of Neurology, 2016, 80, 871-881.	5.3	64
38	SPECtre: a spectral coherence-Âbased classifier of actively translated transcripts from ribosome profiling sequence data. BMC Bioinformatics, 2016, 17, 482.	2.6	41
39	Distinct C9orf72-Associated Dipeptide Repeat Structures Correlate with Neuronal Toxicity. PLoS ONE, 2016, 11, e0165084.	2.5	39
40	RAN translation at CGG repeats induces ubiquitin proteasome system impairment in models of fragile X-associated tremor ataxia syndrome. Human Molecular Genetics, 2015, 24, 4317-4326.	2.9	91
41	Transcriptional changes and developmental abnormalities in a zebrafish model of myotonic dystrophy type 1. DMM Disease Models and Mechanisms, 2014, 7, 143-55.	2.4	25
42	Fragile X mental retardation protein expression in Alzheimerââ,¬â,,¢s disease. Frontiers in Genetics, 2014, 5, 360.	2.3	19
43	TDP-43 suppresses CGG repeat-induced neurotoxicity through interactions with HnRNP A2/B1. Human Molecular Genetics, 2014, 23, 5036-5051.	2.9	55
44	Modifications to toxic CUG RNAs induce structural stability, rescue mis-splicing in a myotonic dystrophy cell model and reduce toxicity in a myotonic dystrophy zebrafish model. Nucleic Acids Research, 2014, 42, 12768-12778.	14.5	27
45	JC Polyomavirus Granule Cell Neuronopathy in a Patient Treated With Rituximab. JAMA Neurology, 2014, 71, 487.	9.0	37
46	Repeat-Associated Non-AUG Translation and Its Impact in Neurodegenerative Disease. Neurotherapeutics, 2014, 11, 721-731.	4.4	42
47	Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS. Neuron, 2014, 83, 1043-1050.	8.1	289
48	Impaired sensorimotor gating in Fmr1 knock out and Fragile X premutation model mice. Behavioural Brain Research, 2014, 267, 42-45.	2.2	17
49	Sequestration of DROSHA and DGCR8 by Expanded CGG RNA Repeats Alters MicroRNA Processing in Fragile X-Associated Tremor/Ataxia Syndrome. Cell Reports, 2013, 3, 869-880.	6.4	216
50	C9orf72-Associated FTD/ALS: When Less Is More. Neuron, 2013, 80, 257-258.	8.1	3
51	The use of multi temporal LiDAR to assess basin-scale erosion and deposition following the catastrophic January 2011 Lockyer flood, SE Queensland, Australia. Geomorphology, 2013, 184, 111-126.	2.6	76
52	CGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome. Neuron, 2013, 78, 440-455.	8.1	422
53	Making sense of the antisense transcripts in C9FTD/ALS. Acta Neuropathologica, 2013, 126, 785-787.	7.7	3
54	Impaired activity-dependent FMRP translation and enhanced mGluR-dependent LTD in Fragile X premutation mice. Human Molecular Genetics, 2013, 22, 1180-1192.	2.9	48

#	Article	IF	CITATIONS
55	C9 <scp>ORF</scp> 72 expansion in a family with bipolar disorder. Bipolar Disorders, 2013, 15, 326-332.	1.9	58
56	Kill the messenger where it lives. Nature, 2012, 488, 36-37.	27.8	1
57	Neurodegeneration the RNA way. Progress in Neurobiology, 2012, 97, 173-189.	5.7	76
58	Epigenetics in Nucleotide Repeat Expansion Disorders. Seminars in Neurology, 2011, 31, 470-483.	1.4	37
59	RNAâ€mediated neurodegeneration in repeat expansion disorders. Annals of Neurology, 2010, 67, 291-300.	5.3	192
60	Histone Deacetylases Suppress CGG Repeat–Induced Neurodegeneration Via Transcriptional Silencing in Models of Fragile X Tremor Ataxia Syndrome. PLoS Genetics, 2010, 6, e1001240.	3.5	93
61	Autophagy and the ubiquitin-proteasome system: Collaborators in neuroprotection. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 691-699.	3.8	302
62	Whisker stimulation-dependent translation of FMRP in the barrel cortex requires activation of type I metabotropic glutamate receptors. Molecular Brain Research, 2003, 110, 267-278.	2.3	53
63	The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14374-14378.	7.1	257
64	Fragile X mental retardation protein in plasticity and disease. Journal of Neuroscience Research, 2002, 70, 623-630.	2.9	17
65	Phosphorylation, CREB, and Mental Retardation. Pediatric Research, 2001, 50, 672-672.	2.3	7
66	Sensory stimulation increases cortical expression of the fragile X mental retardation protein in vivo. Molecular Brain Research, 2000, 80, 17-25.	2.3	58
67	Behavioral sensitization and extracellular dopamine responses to amphetamine after various treatments. Psychopharmacology, 1997, 134, 221-229.	3.1	67