
Simon J. Williams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9470477/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NAD ⁺ cleavage activity by animal and plant TIR domains in cell death pathways. Science, 2019, 365, 793-799.	6.0	357
2	Structural and Functional Analysis of a Plant Resistance Protein TIR Domain Reveals Interfaces for Self-Association, Signaling, and Autoregulation. Cell Host and Microbe, 2011, 9, 200-211.	5.1	301
3	Structural Basis for Assembly and Function of a Heterodimeric Plant Immune Receptor. Science, 2014, 344, 299-303.	6.0	300
4	Emerging Insights into the Functions of Pathogenesis-Related Protein 1. Trends in Plant Science, 2017, 22, 871-879.	4.3	271
5	An Autoactive Mutant of the M Flax Rust Resistance Protein Has a Preference for Binding ATP, Whereas Wild-Type M Protein Binds ADP. Molecular Plant-Microbe Interactions, 2011, 24, 897-906.	1.4	141
6	Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 250-261.	2.2	123
7	The Nuclear Immune Receptor RPS4 Is Required for RRS1SLH1-Dependent Constitutive Defense Activation in Arabidopsis thaliana. PLoS Genetics, 2014, 10, e1004655.	1.5	121
8	Comparative Analysis of the Flax Immune Receptors L6 and L7 Suggests an Equilibrium-Based Switch Activation Model. Plant Cell, 2016, 28, 146-159.	3.1	110
9	The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12856-12861.	3.3	105
10	Multiple functional self-association interfaces in plant TIR domains. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2046-E2052.	3.3	103
11	Wheat <scp>PR</scp> â€1 proteins are targeted by necrotrophic pathogen effector proteins. Plant Journal, 2016, 88, 13-25.	2.8	96
12	The Plant "Resistosome― Structural Insights into Immune Signaling. Cell Host and Microbe, 2019, 26, 193-201.	5.1	76
13	Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17594-17599.	3.3	75
14	Multiple Domain Associations within the Arabidopsis Immune Receptor RPP1 Regulate the Activation of Programmed Cell Death. PLoS Pathogens, 2016, 12, e1005769.	2.1	69
15	Towards the structure of the TIR-domain signalosome. Current Opinion in Structural Biology, 2017, 43, 122-130.	2.6	64
16	Animal NLRs provide structural insights into plant NLR function. Annals of Botany, 2017, 119, mcw171.	1.4	62
17	Engineering Saccharomyces cerevisiae To Release 3-Mercaptohexan-1-ol during Fermentation through Overexpression of an S. cerevisiae Gene, <i>STR3</i> , for Improvement of Wine Aroma. Applied and Environmental Microbiology, 2011, 77, 3626-3632.	1.4	60
18	Crystal Structure of Rice Importin-α and Structural Basis of Its Interaction with Plant-Specific Nuclear Localization Signals. Plant Cell, 2013, 24, 5074-5088.	3.1	60

SIMON J. WILLIAMS

#	Article	IF	CITATIONS
19	De novo GTP Biosynthesis Is Critical for Virulence of the Fungal Pathogen Cryptococcus neoformans. PLoS Pathogens, 2012, 8, e1002957.	2.1	56
20	PR1â€mediated defence via Câ€terminal peptide release is targeted by a fungal pathogen effector. New Phytologist, 2021, 229, 3467-3480.	3.5	48
21	Distinctive Conformation of Minor Siteâ€Specific Nuclear Localization Signals Bound to Importinâ€Î±. Traffic, 2013, 14, 1144-1154.	1.3	45
22	Structure and Function of the TIR Domain from the Grape NLR Protein RPV1. Frontiers in Plant Science, 2016, 7, 1850.	1.7	41
23	Seeing is believing: Exploiting advances in structural biology to understand and engineer plant immunity. Current Opinion in Plant Biology, 2022, 67, 102210.	3.5	35
24	Crystal structure of Mycobacterium tuberculosis ketolâ€acid reductoisomerase at 1.0 à resolution – a potential target for antiâ€tuberculosis drug discovery. FEBS Journal, 2016, 283, 1184-1196.	2.2	33
25	Production of small cysteineâ€rich effector proteins in <i>Escherichia coli</i> for structural and functional studies. Molecular Plant Pathology, 2017, 18, 141-151.	2.0	32
26	The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surfaceâ€exposed residue. New Phytologist, 2022, 234, 592-606.	3.5	32
27	Crystal structure of the Melampsora lini effector AvrP reveals insights into a possible nuclear function and recognition by the flax disease resistance protein P. Molecular Plant Pathology, 2018, 19, 1196-1209.	2.0	24
28	The crystal structure of SnTox3 from the necrotrophic fungus <i>Parastagonospora nodorum</i> reveals a unique effector fold and provides insight into Snn3 recognition and proâ€domain protease processing of fungal effectors. New Phytologist, 2021, 231, 2282-2296.	3.5	24
29	Fusion-protein-assisted protein crystallization. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 861-869.	0.4	23
30	Structural Basis of Interaction of Bipartite Nuclear Localization Signal from Agrobacterium VirD2 with Rice Importin-α. Molecular Plant, 2014, 7, 1061-1064.	3.9	22
31	GMP Synthase Is Required for Virulence Factor Production and Infection by Cryptococcus neoformans. Journal of Biological Chemistry, 2017, 292, 3049-3059.	1.6	19
32	Disruption of de Novo Adenosine Triphosphate (ATP) Biosynthesis Abolishes Virulence in <i>Cryptococcus neoformans</i> . ACS Infectious Diseases, 2016, 2, 651-663.	1.8	16
33	Cryptococcus neoformans ADS lyase is an enzyme essential for virulence whose crystal structure reveals features exploitable in antifungal drug design. Journal of Biological Chemistry, 2017, 292, 11829-11839.	1.6	15
34	Structural and functional insights into the modulation of the activity of a flax cytokinin oxidase by flax rust effector AvrL567â€A. Molecular Plant Pathology, 2019, 20, 211-222.	2.0	15
35	Structural determinants of the IRF4/DNA homodimeric complex. Nucleic Acids Research, 2021, 49, 2255-2265.	6.5	14
36	Assessing the efficacy of CRISPR/Cas9 genome editing in the wheat pathogen Parastagonspora nodorum. Fungal Biology and Biotechnology, 2020, 7, 4.	2.5	12

SIMON J. WILLIAMS

#	Article	IF	CITATIONS
37	Pro-domain processing of fungal effector proteins from plant pathogens. PLoS Pathogens, 2021, 17, e1010000.	2.1	12
38	Purification of the M flax-rust resistance protein expressed in Pichia pastoris. Plant Journal, 2007, 50, 1107-1117.	2.8	10
39	The distribution of different classes of nuclear localization signals (NLSs) in diverse organisms and the utilization of the minor NLS-binding site inplantnuclear import factor importin-α. Plant Signaling and Behavior, 2013, 8, e25976.	1.2	10
40	Autoimmunity and effector recognition in <i>Arabidopsis thaliana</i> can be uncoupled by mutations in the RRS1â€R immune receptor. New Phytologist, 2019, 222, 954-965.	3.5	10
41	Crystallization and preliminary X-ray diffraction analyses of the TIR domains of three TIR–NB–LRR proteins that are involved in disease resistance in <i>Arabidopsis thaliana</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1275-1280.	0.7	5
42	The molecular basis for the development of adult Tâ€cell leukemia/lymphoma in patients with an <scp>IRF4^{K59R}</scp> mutation. Protein Science, 2022, 31, 787-796.	3.1	5
43	Crystallization and X-ray diffraction analysis of the C-terminal domain of the flax rust effector protein AvrM. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1603-1607.	0.7	4
44	Crystallization, X-ray diffraction analysis and preliminary structure determination of the TIR domain from the flax resistance protein L6. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 237-240.	0.7	3
45	A linker strategy for the production and crystallization of Toll/interleukin-1 receptor/resistance protein domain complexes. Protein Engineering, Design and Selection, 2015, 28, 137-145.	1.0	3
46	Recombinant production of functional full-length and truncated human TRAM/TICAM-2 adaptor protein involved in Toll-like receptor and interferon signaling. Protein Expression and Purification, 2015, 106, 31-40.	0.6	3
47	Optimized Production of Disulfide-Bonded Fungal Effectors in <i>Escherichia coli</i> Using CyDisCo and FunCyDisCo Coexpression Approaches. Molecular Plant-Microbe Interactions, 2022, 35, 109-118.	1.4	3
48	Purification, crystallization and preliminary X-ray analysis of adenylosuccinate synthetase from the fungal pathogen <i>Cryptococcus neoformans</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1033-1036.	0.7	2
49	Crystallization and preliminary X-ray diffraction analysis of the flax cytokinin oxidase LuCKX1.1. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1094-1096.	0.7	2