List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9470455/publications.pdf

Version: 2024-02-01

70961 79541 6,811 74 41 73 citations h-index g-index papers 74 74 74 8064 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Butyrate: A Double-Edged Sword for Health?. Advances in Nutrition, 2018, 9, 21-29.	2.9	639
2	Toll-like receptor–mediated NF-κB activation: a phylogenetically conserved paradigm in innate immunity. Journal of Clinical Investigation, 2001, 107, 13-19.	3.9	633
3	Negative Regulation of Toll-like Receptor-mediated Signaling by Tollip. Journal of Biological Chemistry, 2002, 277, 7059-7065.	1.6	521
4	Branched Chain Amino Acids: Beyond Nutrition Metabolism. International Journal of Molecular Sciences, 2018, 19, 954.	1.8	413
5	Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie, 2010, 92, 1236-1241.	1.3	264
6	A genome-wide screen identifies a single \hat{l}^2 -defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics, 2004, 5, 56.	1.2	258
7	Identification and Functional Characterization of Three Chicken Cathelicidins with Potent Antimicrobial Activity. Journal of Biological Chemistry, 2006, 281, 2858-2867.	1.6	194
8	Cross-species analysis of the mammalian \hat{l}^2 -defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiological Genomics, 2005, 23, 5-17.	1.0	191
9	Butyrate Enhances Disease Resistance of Chickens by Inducing Antimicrobial Host Defense Peptide Gene Expression. PLoS ONE, 2011, 6, e27225.	1.1	191
10	Nutrients Mediate Intestinal Bacteria–Mucosal Immune Crosstalk. Frontiers in Immunology, 2018, 9, 5.	2.2	189
11	Bridging intestinal immunity and gut microbiota by metabolites. Cellular and Molecular Life Sciences, 2019, 76, 3917-3937.	2.4	176
12	Oral Administration of <i>Lactobacillus fermentum</i> I5007 Favors Intestinal Development and Alters the Intestinal Microbiota in Formula-Fed Piglets. Journal of Agricultural and Food Chemistry, 2014, 62, 860-866.	2.4	167
13	Rapid evolution and diversification of mammalian $\hat{l}\pm$ -defensins as revealed by comparative analysis of rodent and primate genes. Physiological Genomics, 2004, 20, 1-11.	1.0	145
14	Avian beta-defensin nomenclature: A community proposed update. Immunology Letters, 2007, 110, 86-89.	1.1	138
15	Modulation of Antimicrobial Host Defense Peptide Gene Expression by Free Fatty Acids. PLoS ONE, 2012, 7, e49558.	1.1	112
16	Porcine antimicrobial peptides: New prospects for ancient molecules of host defense. Veterinary Research, 2000, 31, 277-296.	1.1	107
17	Induction of Porcine Host Defense Peptide Gene Expression by Short-Chain Fatty Acids and Their Analogs. PLoS ONE, 2013, 8, e72922.	1.1	106
18	Regulation of the Intestinal Barrier Function by Host Defense Peptides. Frontiers in Veterinary Science, 2015, 2, 57.	0.9	104

#	Article	IF	CITATIONS
19	Comparative biogeography of the gut microbiome between Jinhua and Landrace pigs. Scientific Reports, 2018, 8, 5985.	1.6	101
20	Porcine Epithelial \hat{I}^2 -Defensin 1 Is Expressed in the Dorsal Tongue at Antimicrobial Concentrations. Infection and Immunity, 1999, 67, 3121-3127.	1.0	97
21	Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications. Pharmaceuticals, 2014, 7, 220-247.	1.7	96
22	Regulation of Cathelicidin Gene Expression: Induction by Lipopolysaccharide, Interleukin-6, Retinoic Acid, and Salmonella enterica Serovar Typhimurium Infection. Infection and Immunity, 2000, 68, 5552-5558.	1.0	91
23	Lactobacillus reuteri I5007 Modulates Intestinal Host Defense Peptide Expression in the Model of IPEC-J2 Cells and Neonatal Piglets. Nutrients, 2017, 9, 559.	1.7	81
24	Dietary <i>Clostridium butyricum</i> Induces a Phased Shift in Fecal Microbiota Structure and Increases the Acetic Acid-Producing Bacteria in a Weaned Piglet Model. Journal of Agricultural and Food Chemistry, 2018, 66, 5157-5166.	2.4	79
25	Molecular cloning and tissue expression of porcine β-defensin-1. FEBS Letters, 1998, 424, 37-40.	1.3	78
26	Bioinformatic and expression analysis of novel porcine \hat{l}^2 -defensins. Mammalian Genome, 2006, 17, 332-339.	1.0	78
27	Fowlicidin-3 is an \hat{l}_{\pm} -helical cationic host defense peptide with potent antibacterial and lipopolysaccharide-neutralizing activities. FEBS Journal, 2007, 274, 418-428.	2.2	77
28	Structure-activity relationships of fowlicidin-1, a cathelicidin antimicrobial peptide in chicken. FEBS Journal, 2006, 273, 2581-2593.	2.2	73
29	The Central Kink Region of Fowlicidin-2, an α-Helical Host Defense Peptide, Is Critically Involved in Bacterial Killing and Endotoxin Neutralization. Journal of Innate Immunity, 2009, 1, 268-280.	1.8	69
30	Canine cathelicidin (K9CATH): Gene cloning, expression, and biochemical activity of a novel pro-myeloid antimicrobial peptide. Developmental and Comparative Immunology, 2007, 31, 1278-1296.	1.0	66
31	Lentinan modulates intestinal microbiota and enhances barrier integrity in a piglet model challenged with lipopolysaccharide. Food and Function, 2019, 10, 479-489.	2.1	64
32	Gut Microbiota Is a Major Contributor to Adiposity in Pigs. Frontiers in Microbiology, 2018, 9, 3045.	1.5	63
33	In vitro antibacterial and hemolytic activities of crotamine, a small basic myotoxin from rattlesnake Crotalus durissus. Journal of Antibiotics, 2011, 64, 327-331.	1.0	62
34	Endoscopic, rapid near-infrared optical tomography. Optics Letters, 2006, 31, 2876.	1.7	54
35	Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut. BMC Biology, 2019, 17, 106.	1.7	51
36	Analyses of Five Gallinacin Genes and the Salmonella enterica Serovar Enteritidis Response in Poultry. Infection and Immunity, 2006, 74, 3375-3380.	1.0	49

#	Article	IF	CITATIONS
37	Cloning and Characterization of the Gene for a New Epithelial \hat{l}^2 -Defensin. Journal of Biological Chemistry, 1999, 274, 24031-24037.	1.6	48
38	Tissue expression and developmental regulation of chicken cathelicidin antimicrobial peptides. Journal of Animal Science and Biotechnology, 2012, 3, 15.	2.1	47
39	Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs. Peptides, 2013, 50, 129-138.	1.2	44
40	Immune regulatory activities of fowlicidin-1, a cathelicidin host defense peptide. Molecular Immunology, 2014, 59, 55-63.	1.0	43
41	Cyclic AMP synergizes with butyrate in promoting \hat{l}^2 -defensin 9 expression in chickens. Molecular Immunology, 2014, 57, 171-180.	1.0	42
42	Cloning of Porcine NRAMP1 and Its Induction by Lipopolysaccharide, Tumor Necrosis Factor Alpha, and Interleukin- $1^{\hat{1}^2}$: Role of CD14 and Mitogen-Activated Protein Kinases. Infection and Immunity, 2000, 68, 1086-1093.	1.0	41
43	Dietary modulation of endogenous host defense peptide synthesis as an alternative approach to in-feed antibiotics. Animal Nutrition, 2018, 4, 160-169.	2.1	41
44	Cathelicidin Gene Expression in Porcine Tissues: Roles in Ontogeny and Tissue Specificity. Infection and Immunity, 1999, 67, 439-442.	1.0	41
45	Association of growth rate with hormone levels and myogenic gene expression profile in broilers. Journal of Animal Science and Biotechnology, 2017, 8, 43.	2.1	40
46	Intestinal Microbiota Succession and Immunomodulatory Consequences after Introduction of Lactobacillus reuteri I5007 in Neonatal Piglets. PLoS ONE, 2015, 10, e0119505.	1.1	38
47	Differential Impact of Subtherapeutic Antibiotics and Ionophores on Intestinal Microbiota of Broilers. Microorganisms, 2019, 7, 282.	1.6	35
48	Population genomics identifies patterns of genetic diversity and selection in chicken. BMC Genomics, 2019, 20, 263.	1.2	34
49	A fowlicidin-1 analog protects mice from lethal infections induced by methicillin-resistant Staphylococcus aureus. Peptides, 2010, 31, 1225-1230.	1.2	31
50	Holly polyphenols alleviate intestinal inflammation and alter microbiota composition in lipopolysaccharide-challenged pigs. British Journal of Nutrition, 2020, 123, 881-891.	1.2	31
51	1,25-Dihydroxyvitamin-D3 Induces Avian \hat{l}^2 -Defensin Gene Expression in Chickens. PLoS ONE, 2016, 11, e0154546.	1.1	31
52	The Signal Pathway of Antibiotic Alternatives on Intestinal Microbiota and Immune Function. Current Protein and Peptide Science, 2016, 17, 785-796.	0.7	31
53	High Throughput Screening for Natural Host Defense Peptide-Inducing Compounds as Novel Alternatives to Antibiotics. Frontiers in Cellular and Infection Microbiology, 2018, 8, 191.	1.8	29
54	Genomic data for 78 chickens from 14 populations. GigaScience, 2017, 6, 1-5.	3.3	28

#	Article	IF	Citations
55	Linkage between the intestinal microbiota and residual feed intake in broiler chickens. Journal of Animal Science and Biotechnology, 2021, 12, 22.	2.1	28
56	Molecular and functional characterization of bovine \hat{l}^2 -defensin-1. Veterinary Immunology and Immunopathology, 2006, 113, 181-190.	0.5	23
57	Transcriptional Regulation of Antimicrobial Host Defense Peptides. Current Protein and Peptide Science, 2015, 16, 672-679.	0.7	23
58	Chicken Intestinal Mycobiome: Initial Characterization and Its Response to Bacitracin Methylene Disalicylate. Applied and Environmental Microbiology, 2020, 86, .	1.4	20
59	Identification of an Intestinal Microbiota Signature Associated With the Severity of Necrotic Enteritis. Frontiers in Microbiology, 2021, 12, 703693.	1.5	20
60	Identity of heart and liver l-3-hydroxyacyl coenzyme A dehydrogenase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1437, 119-123.	1.2	17
61	Butyrate in combination with forskolin alleviates necrotic enteritis, increases feed efficiency, and improves carcass composition of broilers. Journal of Animal Science and Biotechnology, 2022, 13, 3.	2.1	17
62	Biogeography, succession, and origin of the chicken intestinal mycobiome. Microbiome, 2022, 10, 55.	4.9	17
63	Rattusin, an Intestinal α-Defensin-Related Peptide in Rats with a Unique Cysteine Spacing Pattern and Salt-Insensitive Antibacterial Activities. Antimicrobial Agents and Chemotherapy, 2013, 57, 1823-1831.	1.4	15
64	Development of a Cell-Based High-Throughput Screening Assay to Identify Porcine Host Defense Peptide-Inducing Compounds. Journal of Immunology Research, 2018, 2018, 1-13.	0.9	14
65	Butyrate and Forskolin Augment Host Defense, Barrier Function, and Disease Resistance Without Eliciting Inflammation. Frontiers in Nutrition, 2021, 8, 778424.	1.6	13
66	Discovery of natural products capable of inducing porcine host defense peptide gene expression using cell-based high throughput screening. Journal of Animal Science and Biotechnology, 2021, 12, 14.	2.1	11
67	Butyrate, Forskolin, and Lactose Synergistically Enhance Disease Resistance by Inducing the Expression of the Genes Involved in Innate Host Defense and Barrier Function. Antibiotics, 2021, 10, 1175.	1.5	9
68	Natural Cyclooxygenase-2 Inhibitors Synergize With Butyrate to Augment Chicken Host Defense Peptide Gene Expression. Frontiers in Immunology, 2022, 13, 819222.	2.2	7
69	Synergistic Induction of Chicken Antimicrobial Host Defense Peptide Gene Expression by Butyrate and Sugars. Frontiers in Microbiology, 2021, 12, 781649.	1.5	7
70	Perturbations of the ileal mycobiota by necrotic enteritis in broiler chickens. Journal of Animal Science and Biotechnology, 2021, 12, 107.	2.1	6
71	Epigenetic Regulation of Host Defense Peptide Synthesis: Synergy Between Histone Deacetylase Inhibitors and DNA/Histone Methyltransferase Inhibitors. Frontiers in Immunology, 2022, 13, 874706.	2.2	6
72	Dietary Bacitracin Methylene Disalicylate Improves Growth Performance by Mediating the Gut Microbiota in Broilers. Antibiotics, 2022, $11,818$.	1.5	3

#	Article	IF	CITATIONS
73	High-Throughput Identification of Epigenetic Compounds to Enhance Chicken Host Defense Peptide Gene Expression. Antibiotics, 2022, $11,933$.	1.5	3
74	Near-Infrared Optical Tomography in Endoscopy-Geometry. Optics and Photonics News, 2006, 17, 31.	0.4	0