
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/947024/publications.pdf Version: 2024-02-01

Нло Нилыс

#	Article	IF	CITATIONS
1	Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. Journal Physics D: Applied Physics, 2007, 40, 5383-5387.	2.8	318
2	Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Applied Physics Letters, 2008, 92, .	3.3	301
3	Catalytically active single-atom niobium in graphitic layers. Nature Communications, 2013, 4, 1924.	12.8	261
4	Fe 3 N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano Energy, 2017, 31, 74-83.	16.0	167
5	Influence of alloy components on electromagnetic characteristics of core/shell-type Fe–Ni nanoparticles. Journal of Applied Physics, 2008, 104, .	2.5	146
6	Enhanced Electrochemical Stability of Sn-Carbon Nanotube Nanocapsules as Lithium-Ion Battery Anode. Electrochimica Acta, 2014, 144, 376-382.	5.2	100
7	Inverse Capacity Growth and Pocket Effect in SnS ₂ Semifilled Carbon Nanotube Anode. ACS Nano, 2018, 12, 8037-8047.	14.6	90
8	Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries. Nanoscale, 2014, 6, 6860-6865.	5.6	82
9	High permittivity from defective carbon-coated Cu nanocapsules. Nanotechnology, 2007, 18, 275701.	2.6	63
10	Electrochemical hydrogen storage of the graphene sheets prepared by DC arc-discharge method. Surface and Coatings Technology, 2013, 228, S120-S125.	4.8	58
11	Preparation and Electrochemical properties of Fe-Sn (C) Nanocomposites as Anode for Lithium-ion Batteries. Electrochimica Acta, 2014, 129, 93-99.	5.2	53
12	Theoretical Prediction of Catalytic Activity of Ti ₂ C MXene as Cathode for Li–O ₂ Batteries. Journal of Physical Chemistry C, 2019, 123, 17466-17471.	3.1	53
13	Effective carbon constraint of MnS nanoparticles as high-performance anode of lithium-ion batteries. Journal of Power Sources, 2019, 437, 226931.	7.8	49
14	A Novel Strategy of In Situ Trimerization of Cyano Groups Between the Ti3C2Tx (MXene) Interlayers for High-Energy and High-Power Sodium-Ion Capacitors. Nano-Micro Letters, 2020, 12, 135.	27.0	49
15	Formation and characterization of intermetallic Fe–Sn nanoparticles synthesized by an arc discharge method. Intermetallics, 2007, 15, 1589-1594.	3.9	32
16	Synthesis, growth mechanism and magnetic properties of SiO2-coated Co nanocapsules. Acta Materialia, 2007, 55, 3727-3733.	7.9	28
17	Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-discharge. RSC Advances, 2015, 5, 68714-68721.	3.6	28
18	Oxygen Evolution Reaction on Pristine and Oxidized TiC (100) Surface in Li–O ₂ Battery. Journal of Physical Chemistry C, 2018, 122, 12665-12672.	3.1	27

#	Article	IF	CITATIONS
19	Spray granulation of Fe and C nanoparticles and their impedance match for microwave absorption. Journal of Materials Science and Technology, 2018, 34, 496-502.	10.7	26
20	Catalytic pyrogenation synthesis of C/Ni composite nanoparticles: controllable carbon structures and high permittivities. Journal Physics D: Applied Physics, 2010, 43, 105403.	2.8	25
21	Synthesis and electrochemical activities of TiC/C core-shell nanocrystals. Journal of Alloys and Compounds, 2017, 693, 500-509.	5.5	25
22	Intrinsic Properties Affecting the Catalytic Activity of 3d Transition-Metal Carbides in Li–O ₂ Battery. Journal of Physical Chemistry C, 2018, 122, 17812-17819.	3.1	23
23	Rich nitrogen-doped carbon on carbon nanotubes for high-performance sodium-ion supercapacitors. Journal of Power Sources, 2020, 459, 228104.	7.8	23
24	SnS2 and SnS/SnS2 heterojunction nanosheets prepared by in-situ one-step sulfurization and visible light-assisted electrochemical water splitting properties. Journal of Alloys and Compounds, 2020, 834, 155174.	5.5	23
25	Nanostructured Sn-M (MÂ=ÂCu, Mg and Fe) intermetallic alloys and their electrochemical activity as anode electrodes in a Li-ion battery. Journal of Alloys and Compounds, 2017, 706, 401-408.	5.5	21
26	Dual-Constrained Sulfur in FeS ₂ @C Nanostructured Lithium-Sulfide Batteries. ACS Applied Energy Materials, 2020, 3, 10950-10960.	5.1	21
27	Mn3O4 nanoparticles encapsulated in carbon cages as the electrode of dual-mechanism supercapacitors. Materials Today Chemistry, 2019, 12, 361-372.	3.5	20
28	Exploring the Potentials of Ti ₃ C <i>_i</i> N _{2–<i>i</i>} T <i>_x</i> (<i>i</i> = 0, 1,) Tj ETQc Interfaces, 2021, 13, 22341-22350.	10 8 8 rgB1	Öyerlock 1
29	Interfaces, 2021, 13, 22341-22330. Ionic Liquidâ€Assisted Anchoring SnO 2 Nanoparticles on Carbon Nanotubes as Highly Cyclable Anode of Lithium Ion Batteries. Advanced Materials Interfaces, 2020, 7, 1901916.	3.7	17
30	Uniformly Grafting SnO ₂ Nanoparticles on Ionic Liquid Reduced Graphene Oxide Sheets for High Lithium Storage. Advanced Materials Interfaces, 2018, 5, 1701685.	3.7	16
31	Nitrogen-doped TiO2 nanotube anode enabling improvement of electronic conductivity for fast and long-term sodium storage. Journal of Alloys and Compounds, 2021, 889, 161612.	5.5	14
32	Lithium-ion storage in molybdenum phosphides with different crystal structures. Dalton Transactions, 2020, 49, 2225-2233.	3.3	12
33	S-O bond chemically constrained NiS2/rGO nanocomposite with enhanced Na-ion storage capacity. Chinese Chemical Letters, 2020, 31, 2353-2357.	9.0	12
34	Progressive lithiation mechanism of Sn4P3 nanosheets as anodes for Li-ion batteries. Applied Surface Science, 2021, 550, 149247.	6.1	12
35	Pt Concave Nanocubes with High-Index Facets as Electrocatalysts for Glucose Oxidation. ACS Applied Nano Materials, 2022, 5, 4983-4990.	5.0	12
36	Formation of Sn–M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries. Journal of Solid State Chemistry, 2016, 242, 127-135.	2.9	11

#	Article	IF	CITATIONS
37	Point defects-induced adsorption and diffusion of lithium on monolayer titanium disulfide: A first-principles study. Applied Surface Science, 2021, 553, 149448.	6.1	11
38	Intrinsic factors affecting the catalytic activity of doped TiC as potential cathode in Li-O2 batteries. Applied Surface Science, 2019, 494, 983-988.	6.1	10
39	High capacitive sodium-ion storage in N, P co-doped carbon supported on carbon nanotubes. Journal of Electroanalytical Chemistry, 2020, 870, 114200.	3.8	10
40	Facile synthesis and electrocatalytic performance for oxygen reduction of boronâ€doped carbon catalysts on graphene sheets. Fuel Cells, 2021, 21, 328.	2.4	10
41	PVP-grafted synthesis for uniform electrospinning silica@carbon nanofibers as flexible free-standing anode for Li-ion batteries. Solid State Ionics, 2022, 374, 115817.	2.7	10
42	Manipulated electromagnetic losses by integrating chemically heterogeneous components in Fe-based core/shell architecture. Journal of Applied Physics, 2013, 113, .	2.5	9
43	First-principles study of rocksalt early transition-metal carbides as potential catalysts for Li–O ₂ batteries. Physical Chemistry Chemical Physics, 2018, 20, 30231-30238.	2.8	9
44	A Novel Method of Synthesizing Boronâ€doped Carbon Catalysts. Fuel Cells, 2018, 18, 681-687.	2.4	9
45	Superior lithium-ion storage of V-doped MoO3 nanosheets via plasma evaporation. Electrochimica Acta, 2021, 394, 139121.	5.2	9
46	In-built durable Li–S counterparts from Li–TiS2 batteries. Materials Today Energy, 2020, 17, 100439.	4.7	8
47	First-Principles Study of Transition Metal Ti-Based MXenes (Ti ₂ MC ₂ T <i>_x</i> and) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 3/ ACS Applied Nano Materials, 2022, 5, 2358-2366.	42 Td (M≪	subz2
48	Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy. Green Energy and Environment, 2024, 9, 138-151.	8.7	8
49	Progressive lithiation of FeP2 nanoparticles constrained inside the carbon shell. Materials Today Energy, 2020, 18, 100545.	4.7	7
50	Adsorption and diffusion of alkali metals (Li, Na, and K) on heteroatom-doped monolayer titanium disulfide. Dalton Transactions, 2021, 50, 7065-7077.	3.3	7
51	Atomic-scale investigation of electronic properties and Na storage performance of Ti3C2Tx-MXene bilayers with various terminations. Applied Surface Science, 2021, 567, 150735.	6.1	6
52	Electrocatalytic oxygen reduction reaction activity of KOH etched carbon films as metal-free cathodic catalysts for fuel cells. RSC Advances, 2019, 9, 2803-2811.	3.6	5
53	A Stiffness Tunable Self-Healing Composite Comprising PDMS and Titanium Dioxide. ACS Applied Polymer Materials, 2022, 4, 2656-2663.	4.4	5
54	Low-Temperature Nitridation of Fe Nanoparticles Precursor. Journal of Nanoscience and Nanotechnology, 2009, 9, 7383-7.	0.9	4

#	Article	IF	CITATIONS
55	Effect of oxidizing treatment on electrocatalytic activity of boron-doped amorphous carbon thin films. Carbon Letters, 2019, 29, 487-495.	5.9	4
56	Sulfur-atom-expanded MoS2 nanosheets with enhanced lithium-ion storage. Applied Surface Science, 2021, 563, 150261.	6.1	4
57	Synthesis and thermodynamic evaluation of intermetallic Mg-Ni/Mg-Cu nanoscale powders. Journal of Materials Research, 2009, 24, 2503-2510.	2.6	3
58	Self-assembly of an oligo(<i>p</i> -phenylenevinylene)-based molecule on an HOPG surface: insights from multi-scale simulation and STM observation. RSC Advances, 2018, 8, 31868-31873.	3.6	3
59	Inverse capacity growth and progressive lithiation of SnP-semifilled carbon nanotubes anodes. Applied Surface Science, 2021, 568, 150844.	6.1	3
60	Lithiation Mechanism and Performance of Monoclinic ZnP ₂ Anode Materials. Acta Chimica Sinica, 2022, 80, 756.	1.4	3
61	Characterization and Formation Mechanism of the Nanodiamond Synthesized by A High Energy Arcâ€Plasma. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800704.	1.8	2
62	SiOx encapsulated FeSi2–Si eutectic nanoparticles as durable anode of lithium-ion batteries. Materials Today Chemistry, 2021, 21, 100540.	3.5	2
63	Characterization and Electrical Conductivity of Carbon-Coated Metallic (Ni, Cu, Sn) Nanocapsules. Applied Microscopy, 2015, 45, 236-241.	1.4	1
64	A study on fiber-reinforced elastomer with a biphasic loading behavior. Science and Engineering of Composite Materials, 2012, 19, 339-345.	1.4	0