Hans-Martin Herz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9470164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The MLL3/MLL4 Branches of the COMPASS Family Function as Major Histone H3K4 Monomethylases at Enhancers. Molecular and Cellular Biology, 2013, 33, 4745-4754.	1.1	329
2	Enhancer-associated H3K4 monomethylation by Trithorax-related, the <i>Drosophila</i> homolog of mammalian Mll3/Mll4. Genes and Development, 2012, 26, 2604-2620.	2.7	327
3	Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes and Development, 2010, 24, 574-589.	2.7	272
4	SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends in Biochemical Sciences, 2013, 38, 621-639.	3.7	244
5	Trim24 targets endogenous p53 for degradation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11612-11616.	3.3	238
6	The COMPASS Family of H3K4 Methylases in Drosophila. Molecular and Cellular Biology, 2011, 31, 4310-4318.	1.1	195
7	Histone H3K4 monomethylation catalyzed by Trr and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability. Nature Genetics, 2017, 49, 1647-1653.	9.4	168
8	Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science, 2014, 345, 1065-1070.	6.0	163
9	Enhancer Malfunction in Cancer. Molecular Cell, 2014, 53, 859-866.	4.5	156
10	vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis. Development (Cambridge), 2006, 133, 1871-1880.	1.2	141
11	RhoGEF2 and the formin Dia control the formation of the furrow canal by directed actin assembly during Drosophila cellularisation. Development (Cambridge), 2005, 132, 1009-1020.	1.2	129
12	The H3K27me3 Demethylase dUTX Is a Suppressor of Notch- and Rb-Dependent Tumors in <i>Drosophila</i> . Molecular and Cellular Biology, 2010, 30, 2485-2497.	1.1	106
13	Enhancer deregulation in cancer and other diseases. BioEssays, 2016, 38, 1003-1015.	1.2	79
14	Polycomb Repressive Complex 2-Dependent and -Independent Functions of Jarid2 in Transcriptional Regulation in <i>Drosophila</i> . Molecular and Cellular Biology, 2012, 32, 1683-1693.	1.1	66
15	An Evolutionary Conserved Epigenetic Mark of Polycomb Response Elements Implemented by Trx/MLL/COMPASS. Molecular Cell, 2016, 63, 318-328.	4.5	60
16	The JARID2–PRC2 duality: Figure 1 Genes and Development, 2010, 24, 857-861.	2.7	55
17	A cryptic Tudor domain links BRWD2/PHIP to COMPASS-mediated histone H3K4 methylation. Genes and Development, 2017, 31, 2003-2014.	2.7	54
18	Regulation of the Rac GTPase pathway by the multifunctional Rho GEF Pebble is essential for mesoderm migration in the <i>Drosophila</i> gastrula. Development (Cambridge), 2009, 136, 813-822.	1.2	39

HANS-MARTIN HERZ

#	Article	IF	CITATIONS
19	SnapShot: Histone Lysine Methylase Complexes. Cell, 2012, 149, 498-498.e1.	13.5	38
20	Common and Distinct Genetic Properties of ESCRT-II Components in Drosophila. PLoS ONE, 2009, 4, e4165.	1.1	36
21	Histone demethylase dUTX antagonizes JAK-STAT signaling to maintain proper gene expression and architecture of the <i>Drosophila</i> testis niche. Development (Cambridge), 2013, 140, 1014-1023.	1.2	26
22	PROSER1 mediates TET2 O-GlcNAcylation to regulate DNA demethylation on UTX-dependent enhancers and CpG islands. Life Science Alliance, 2022, 5, e202101228.	1.3	24
23	The Drosophila mitotic inhibitor Frühstart specifically binds to the hydrophobic patch of cyclins. EMBO Reports, 2007, 8, 490-496.	2.0	23
24	The histone deacetylase complex MiDAC regulates a neurodevelopmental gene expression program to control neurite outgrowth. ELife, 2020, 9, .	2.8	23
25	Genetic analysis of ESCRT function in <i>Drosophila</i> : a tumour model for human <i>Tsg101</i> . Biochemical Society Transactions, 2009, 37, 204-207.	1.6	13
26	The Curious Case of Bivalent Marks. Developmental Cell, 2009, 17, 301-303.	3.1	12
27	The MLL3/4 complexes and MiDAC co-regulate H4K20ac to control a specific gene expression program. Life Science Alliance, 2022, 5, e202201572.	1.3	4