Alison D Axtman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9469727/publications.pdf

Version: 2024-02-01

933447 794594 23 577 10 19 citations g-index h-index papers 39 39 39 887 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identification of Pyrimidine-Based Lead Compounds for Understudied Kinases Implicated in Driving Neurodegeneration. Journal of Medicinal Chemistry, 2022, 65, 1313-1328.	6.4	20
2	Use of AD Informer Set compounds to explore validity of novel targets in Alzheimer's disease pathology. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2022, 8, e12253.	3.7	3
3	AD Informer Set: Chemical tools to facilitate Alzheimer's disease drug discovery. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2022, 8, e12246.	3.7	4
4	Protein proximity networks and functional evaluation of the casein kinase 1 gamma family reveal unique roles for CK1 \hat{I}^3 3 in WNT signaling. Journal of Biological Chemistry, 2022, 298, 101986.	3.4	5
5	Host Kinase CSNK2 is a Target for Inhibition of Pathogenic SARS-like \hat{I}^2 -Coronaviruses. ACS Chemical Biology, 2022, 17, 1937-1950.	3.4	16
6	Towards a RIOK2 chemical probe: cellular potency improvement of a selective 2-(acylamino)pyridine series. RSC Medicinal Chemistry, 2021, 12, 129-136.	3.9	3
7	The Kinase Chemogenomic Set (KCGS): An Open Science Resource for Kinase Vulnerability Identification. International Journal of Molecular Sciences, 2021, 22, 566.	4.1	62
8	Development of a potent and selective chemical probe for the pleiotropic kinase CK2. Cell Chemical Biology, 2021, 28, 546-558.e10.	5.2	62
9	Characterizing the role of the dark kinome in neurodegenerative disease – A mini review. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 130014.	2.4	3
10	Exploration of Aberrant E3 Ligases Implicated in Alzheimer's Disease and Development of Chemical Tools to Modulate Their Function. Frontiers in Cellular Neuroscience, 2021, 15, 768655.	3.7	13
11	SGC-AAK1-1: A Chemical Probe Targeting AAK1 and BMP2K. ACS Medicinal Chemistry Letters, 2020, 11, 340-345.	2.8	35
12	NeuroChat with Research Assistant Professor Alison Axtman. ACS Chemical Neuroscience, 2020, 11, 2783-2785.	3.5	0
13	PKIS deep dive yields a chemical starting point for dark kinases and a cell active BRSK2 inhibitor. Scientific Reports, 2020, 10, 15826.	3.3	6
14	Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases. ACS Chemical Neuroscience, 2020, 11, 1871-1886.	3.5	27
15	CDK16: the pick of the understudied PCTAIRE kinases. Nature Reviews Drug Discovery, 2019, 18, 489-489.	46.4	8
16	WNT Activates the AAK1 Kinase to Promote Clathrin-Mediated Endocytosis of LRP6 and Establish a Negative Feedback Loop. Cell Reports, 2019, 26, 79-93.e8.	6.4	68
17	REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment. ACS Central Science, 2018, 4, 89-96.	11.3	28
18	Substrate binding allosterically relieves autoinhibition of the pseudokinase TRIB1. Science Signaling, 2018, 11, .	3.6	46

ALISON D AXTMAN

#	Article	IF	CITATIONS
19	CHAPTER 10. Drugging the Kinome. RSC Drug Discovery Series, 2018, , 253-280.	0.3	0
20	Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS ONE, 2017, 12, e0181585.	2.5	131
21	Function through bio-inspired, synthesis-informed design: step-economical syntheses of designed kinase inhibitors. Organic Chemistry Frontiers, 2014, 1, 1166-1171.	4.5	5
22	A Transcription-uncoupled Negative Feedback Loop for the 1 WNT Pathway: WNT Activates the AAK1 Kinase to Promote Clathrin-mediated Endocytosis of LRP6. SSRN Electronic Journal, 0, , .	0.4	0
23	Evaluation of a Selective Chemical Probe Validates That CK2 Mediates Neuroinflammation in a Human Induced Pluripotent Stem Cell-Derived Microglial Model. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	11