
Dmitry Y Litvinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9469085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Denaturation of human plasma high-density lipoproteins by urea studied by apolipoprotein A-I dissociation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158814.	2.4	4
2	Intestinal and Hepatic Uptake of Dietary Peroxidized Lipids and Their Decomposition Products, and Their Subsequent Effects on Apolipoprotein A1 and Paraoxonase1. Antioxidants, 2021, 10, 1258.	5.1	2
3	A Convenient Co-Dominant Marker for Height-Reducing Ddw1 Allele Useful for Marker-Assisted Selection. Agriculture (Switzerland), 2020, 10, 110.	3.1	5
4	Analysis of Low Molecular Weight Substances and Related Processes Influencing Cellular Cholesterol Efflux. Pharmaceutical Medicine, 2019, 33, 465-498.	1.9	1
5	Significance of Cholesterol-Binding Motifs in ABCA1, ABCG1, and SR-B1 Structure. Journal of Membrane Biology, 2019, 252, 41-60.	2.1	16
6	Relation of Highâ€Density Lipoprotein Charge Heterogeneity, Cholesterol Efflux Capacity, and the Expression of Highâ€Density Lipoproteinâ€Related Genes in Mononuclear Cells to the HDLâ€Cholesterol Level. Lipids, 2018, 53, 979-991.	1.7	5
7	Intracellular and Plasma Membrane Events in Cholesterol Transport and Homeostasis. Journal of Lipids, 2018, 2018, 1-22.	4.8	73
8	Apolipoprotein A-I structure and stability dictate cholesterol efflux efficiency. Atherosclerosis, 2017, 263, e213.	0.8	0
9	Increased presence of oxidized low-density lipoprotein in the left ventricular blood of subjects with cardiovascular disease. Physiological Reports, 2016, 4, e12726.	1.7	8
10	Water-Soluble Components of Sesame Oil Reduce Inflammation and Atherosclerosis. Journal of Medicinal Food, 2016, 19, 629-637.	1.5	15
11	Cholesterol Efflux and Reverse Cholesterol Transport: Experimental Approaches. Current Medicinal Chemistry, 2016, 23, 3883-3908.	2.4	26
12	Significance of Lipid-Free and Lipid-Associated ApoA-I in Cellular Cho-lesterol Efflux. Current Protein and Peptide Science, 2016, 18, 92-99.	1.4	15
13	Aspirin may influence cellular energy status. European Journal of Pharmacology, 2015, 749, 12-19.	3.5	10
14	Anti-Atherosclerotic and Anti-Inflammatory Actions of Sesame Oil. Journal of Medicinal Food, 2015, 18, 11-20.	1.5	65
15	Ionizing Radiation–Inducible miR-27b Suppresses Leukemia Proliferation via Targeting Cyclin A2. International Journal of Radiation Oncology Biology Physics, 2014, 90, 53-62.	0.8	14
16	Antioxidant and anti-inflammatory role of paraoxonase 1: Implication in arteriosclerosis diseases. North American Journal of Medical Sciences, 2012, 4, 523.	1.7	166
17	Peritoneal macrophages are distinct from monocytes and adherent macrophages. Atherosclerosis, 2011, 219, 475-483.	0.8	21
18	Evaluation of a gas chromatography method for azelaic acid determination in selected biological samples. North American Journal of Medical Sciences, 2010, 2, 397-402.	1.7	15

ΟΜΙΤRY Υ LITVINOV

#	Article	IF	CITATIONS
19	Anti-atherosclerotic actions of azelaic acid, an end product of linoleic acid peroxidation, in mice. Atherosclerosis, 2010, 209, 449-454.	0.8	38
20	α-Tocopherol Is Ineffective in Preventing the Decomposition of Preformed Lipid Peroxides and May Promote the Accumulation of Toxic Aldehydes: A Potential Explanation for the Failure of Antioxidants to Affect Human Atherosclerosis. Antioxidants and Redox Signaling, 2009, 11, 1237-1248.	5.4	34
21	Lipid peroxidation and decomposition — Conflicting roles in plaque vulnerability and stability. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 221-231.	2.4	59
22	Dietary oxidized linoleic acid lowers triglycerides via APOA5/APOCIII dependent mechanisms. Atherosclerosis, 2008, 199, 304-309.	0.8	15
23	Activation Mechanism for CRAC Current and Store-operated Ca2+ Entry. Journal of Biological Chemistry, 2006, 281, 34926-34935.	3.4	53
24	Influence of antioxidants on NO-dependent induction of heme oxygenase-1 in U937 monocytes. Molecular Biology, 2005, 39, 77-83.	1.3	1
25	Redox-Dependent Regulation of the Expression of Nitric Oxide-Inducible Genes. Molecular Biology, 2004, 38, 47-57.	1.3	8
26	Extracellular catalase induces cyclooxygenase 2, interleukin 8, and stromelysin genes in primary human chondrocytes. Biochimie, 2004, 86, 945-950.	2.6	5
27	Phorbol ester stimulates expression of the human tryptophanyl-tRNA synthetase gene. Biochemistry (Moscow), 2003, 68, 482-486.	1.5	0
28	The Effect of Catalase on the Expression of Nitric Oxide-dependent Genes in Primary Chondrocytes. Molecular Biology, 2003, 37, 412-414.	1.3	2
29	Redox modulation of NO-dependent induction of interleukin 8 gene in monocytic U937 cells. Cytokine, 2003, 23, 15-22.	3.2	13
30	Identification of Genes Induced in Chondrocytes by Nitric Oxide. Molecular Biology, 2002, 36, 671-677.	1.3	2
31	Induction of vascular endothelial growth factor by nitric oxide in cultured human articular chondrocytes. Biochimie, 2001, 83, 515-522.	2.6	14
32	Functional expression of eukaryotic polypeptide chain release factors 1 and 3 by means of baculovirus/insect cells and complex formation between the factors. FEBS Journal, 1998, 256, 36-44.	0.2	71