
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9469051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Ceria Crystal Plane on the Physicochemical and Catalytic Properties of Pd/Ceria for CO and Propane Oxidation. ACS Catalysis, 2016, 6, 2265-2279.	5.5	505
2	A Highly Effective Catalyst of Sm-MnO _{<i>x</i>} for the NH ₃ -SCR of NO _{<i>x</i>} at Low Temperature: Promotional Role of Sm and Its Catalytic Performance. ACS Catalysis, 2015, 5, 5973-5983.	5.5	457
3	Highly Active and Stable Co ₃ O ₄ /ZSM-5 Catalyst for Propane Oxidation: Effect of the Preparation Method. ACS Catalysis, 2013, 3, 1154-1164.	5.5	338
4	Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts. Applied Catalysis B: Environmental, 2013, 129, 509-516.	10.8	270
5	Promoting Effects of In ₂ O ₃ on Co ₃ O ₄ for CO Oxidation: Tuning O ₂ Activation and CO Adsorption Strength Simultaneously. ACS Catalysis, 2014, 4, 4143-4152.	5.5	250
6	Ru/CeO ₂ Catalyst with Optimized CeO ₂ Support Morphology and Surface Facets for Propane Combustion. Environmental Science & Technology, 2019, 53, 5349-5358.	4.6	228
7	A Sacrificial Coating Strategy Toward Enhancement of Metal–Support Interaction for Ultrastable Au Nanocatalysts. Journal of the American Chemical Society, 2016, 138, 16130-16139.	6.6	217
8	Low-Temperature Methane Combustion over Pd/H-ZSM-5: Active Pd Sites with Specific Electronic Properties Modulated by Acidic Sites of H-ZSM-5. ACS Catalysis, 2016, 6, 8127-8139.	5.5	212
9	Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2018, 221, 652-663.	10.8	204
10	Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres. Applied Catalysis B: Environmental, 2011, 102, 475-483.	10.8	198
11	Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation. Journal of the American Chemical Society, 2017, 139, 8846-8854.	6.6	181
12	Origin of extraordinarily high catalytic activity of Co3O4 and its morphological chemistry for CO oxidation at low temperature. Journal of Catalysis, 2012, 296, 110-119.	3.1	179
13	Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nature Communications, 2019, 10, 1611.	5.8	168
14	Total Oxidation of Propane over a Ru/CeO ₂ Catalyst at Low Temperature. Environmental Science & Technology, 2018, 52, 9531-9541.	4.6	165
15	Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane. Applied Catalysis B: Environmental, 2018, 225, 110-120.	10.8	149
16	Low-temperature CO oxidation over Co3O4-based catalysts: Significant promoting effect of Bi2O3 on Co3O4 catalyst. Applied Catalysis B: Environmental, 2014, 146, 43-49.	10.8	146
17	Effect of TiO ₂ crystal structure on the catalytic performance of Co ₃ O ₄ /TiO ₂ catalyst for low-temperature CO oxidation. Catalysis Science and Technology, 2014, 4, 1268-1275.	2.1	142
18	Surfactantâ€Assisted Stabilization of Au Colloids on Solids for Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2017, 56, 4494-4498.	7.2	129

#	Article	IF	CITATIONS
19	Current status and perspectives of rare earth catalytic materials and catalysis. Chinese Journal of Catalysis, 2014, 35, 1238-1250.	6.9	120
20	Structural Origin: Water Deactivates Metal Oxides to CO Oxidation and Promotes Lowâ€Temperature CO Oxidation with Metals. Angewandte Chemie - International Edition, 2012, 51, 6657-6661.	7.2	119
21	Origin of Efficient Catalytic Combustion of Methane over Co ₃ O ₄ (110): Active Low-Coordination Lattice Oxygen and Cooperation of Multiple Active Sites. ACS Catalysis, 2016, 6, 5508-5519.	5.5	116
22	Ultrathin, Polycrystalline, Two-Dimensional Co ₃ O ₄ for Low-Temperature CO Oxidation. ACS Catalysis, 2019, 9, 2558-2567.	5.5	116
23	The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission. Applied Catalysis B: Environmental, 2013, 134-135, 310-315.	10.8	114
24	Identification of Active Area as Active Center for CO Oxidation over Single Au Atom Catalyst. ACS Catalysis, 2020, 10, 6094-6101.	5.5	106
25	Activity and stability of Co 3 O 4 -based catalysts for soot oxidation: The enhanced effect of Bi 2 O 3 on activation and transfer of oxygen. Applied Catalysis B: Environmental, 2017, 209, 33-44.	10.8	103
26	The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO ₂ . Catalysis Science and Technology, 2018, 8, 2567-2577.	2.1	103
27	A Facile Way To Improve Pt Atom Efficiency for CO Oxidation at Low Temperature: Modification by Transition Metal Oxides. ACS Catalysis, 2019, 9, 6177-6187.	5.5	99
28	Superior catalytic activity of a Pd catalyst in methane combustion by fine-tuning the phase of ceria-zirconia support. Applied Catalysis B: Environmental, 2020, 266, 118631.	10.8	99
29	The promotional role of Ce in Cu/ZSM-5 and in situ surface reaction for selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2015, 5, 90235-90244.	1.7	98
30	Significant Improvement of Catalytic Performance for Chlorinated Volatile Organic Compound Oxidation over RuO <i>_x</i> Supported on Acid-Etched Co ₃ O ₄ . Environmental Science & Technology, 2021, 55, 10734-10743.	4.6	97
31	NixAl1O2-Î′ mesoporous catalysts for dry reforming of methane: The special role of NiAl2O4 spinel phase and its reaction mechanism. Applied Catalysis B: Environmental, 2021, 291, 120074.	10.8	93
32	Preparation of CexZr1â^'xO2 (x=0.75, 0.62) solid solution and its application in Pd-only three-way catalysts. Catalysis Today, 2007, 126, 296-302.	2.2	88
33	Catalytic oxidation of chlorinated volatile organic compounds over Mn-Ti composite oxides catalysts: Elucidating the influence of surface acidity. Applied Catalysis B: Environmental, 2021, 282, 119577.	10.8	85
34	An effective Mn-Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen. Applied Catalysis A: General, 2016, 523, 97-106.	2.2	81
35	Surface tuning of noble metal doped perovskite oxide by synergistic effect of thermal treatment and acid etching: A new path to high-performance catalysts for methane combustion. Applied Catalysis B: Environmental, 2018, 239, 373-382.	10.8	76
36	Titania–Samarium–Manganese Composite Oxide for the Low-Temperature Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Technology, 2020, 54, 2530-2538.	4.6	75

#	Article	IF	CITATIONS
37	A highly effective catalyst of Co-CeO 2 for the oxidation of diesel soot: The excellent NO oxidation activity and NO x storage capacity. Applied Catalysis A: General, 2017, 535, 1-8.	2.2	74
38	Ultralow-temperature CO oxidation on an In ₂ O ₃ –Co ₃ O ₄ catalyst: a strategy to tune CO adsorption strength and oxygen activation simultaneously. Chemical Communications, 2014, 50, 6835-6838.	2.2	73
39	The effects of the Pd chemical state on the activity of Pd/Al ₂ O ₃ catalysts in CO oxidation. Catalysis Science and Technology, 2014, 4, 3973-3980.	2.1	73
40	Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Applied Catalysis B: Environmental, 2021, 285, 119827.	10.8	72
41	A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NO x with ammonia: Effect of the calcination temperature. Journal of Molecular Catalysis A, 2016, 420, 272-281.	4.8	66
42	Total Oxidation of Light Alkane over Phosphate-Modified Pt/CeO ₂ Catalysts. Environmental Science & Technology, 2022, 56, 9661-9671.	4.6	65
43	An efficient Sn Mn1-O composite oxide catalyst for catalytic combustion of vinyl chloride emissions. Applied Catalysis B: Environmental, 2019, 255, 117748.	10.8	64
44	The role of potassium in K/Co3O4 for soot combustion under loose contact. Catalysis Today, 2011, 175, 100-105.	2.2	63
45	Sandwich-like PdO/CeO ₂ nanosheet@HZSM-5 membrane hybrid composite for methane combustion: self-redispersion, sintering-resistance and oxygen, water-tolerance. Nanoscale, 2016, 8, 9621-9628.	2.8	62
46	The existing states of potassium species in K-doped Co ₃ O ₄ catalysts and their influence on the activities for NO and soot oxidation. Catalysis Science and Technology, 2017, 7, 4710-4719.	2.1	52
47	Fe-Beta zeolite for selective catalytic reduction of NOx with NH3: Influence of Fe content. Chinese Journal of Catalysis, 2016, 37, 2069-2078.	6.9	49
48	High Performance and Stability of the Ptâ€W/ZSMâ€5 Catalyst for the Total Oxidation of Propane: The Role of Tungsten. ChemCatChem, 2013, 5, 2495-2503.	1.8	44
49	Confinement of subnanometric PdCo bimetallic oxide clusters in zeolites for methane complete oxidation. Chemical Engineering Journal, 2021, 418, 129398.	6.6	40
50	Soot combustion over Ag catalysts supported on shape-controlled CeO2. Catalysis Today, 2021, 376, 9-18.	2.2	35
51	A highly-efficient La–MnO _x catalyst for propane combustion: the promotional role of La and the effect of the preparation method. Catalysis Science and Technology, 2016, 6, 8222-8233.	2.1	31
52	CO catalytic oxidation over Pd/CeO2 with different chemical states of Pd. Rare Metals, 2020, 39, 800-805.	3.6	30
53	Investigation into Enhanced Catalytic Performance for Epoxidation of Styrene over LaSrCo _{<i>x</i>} Fe _{2–<i>x</i>} O ₆ Double Perovskites: The Role of Singlet Oxygen Species Promoted by the Photothermal Effect. ACS Catalysis, 2021, 11, 11855-11866.	5.5	30
54	Catalytic performance of Co–Fe mixed oxide for NH ₃ -SCR reaction and the promotional role of cobalt. RSC Advances, 2016, 6, 66169-66179.	1.7	29

#	Article	IF	CITATIONS
55	Synthesis of a hollow structured core–shell Au@CeO ₂ –ZrO ₂ nanocatalyst and its excellent catalytic performance. Journal of Materials Chemistry A, 2017, 5, 5601-5611.	5.2	29
56	Catalytic Performance of MgO-Supported Co Catalyst for the Liquid Phase Oxidation of Cyclohexane with Molecular Oxygen. Catalysts, 2017, 7, 155.	1.6	27
57	Understanding the three-way catalytic reaction on Pd/CeO2 by tuning the chemical state of Pd. Applied Surface Science, 2021, 556, 149766.	3.1	26
58	Preparation of LaMnO 3 for catalytic combustion of vinyl chloride. Chinese Journal of Catalysis, 2017, 38, 1406-1412.	6.9	23
59	Ruthenium oxides supported on heterostructured CoPO-MCF materials for catalytic oxidation of vinyl chloride emissions. Journal of Hazardous Materials, 2018, 342, 290-296.	6.5	23
60	Thermal stability of Si-doped V2O5/WO3–TiO2 for selective catalytic reduction of NOx by NH3. Rare Metals, 2019, 38, 292-298.	3.6	23
61	Effect of ceria morphology on the performance of MnOx/CeO2 catalysts in catalytic combustion of N,N-dimethylformamide. Catalysis Science and Technology, 2020, 10, 2473-2483.	2.1	21
62	In situ assembly of ultrafine Mn ₃ O ₄ nanoparticles into MIL-101 for selective aerobic oxidation. Catalysis Science and Technology, 2017, 7, 4136-4144.	2.1	20
63	A novel method for the synthesis of CexZr1-xO2 solid solution with high purity of κappa phase and excellent reactive activity. Catalysis Today, 2019, 327, 262-270.	2.2	20
64	Synthesis of lathanum or La-B doped KIT-6 mesoporous materials and their application in the catalytic oxidation of styrene. Journal of Rare Earths, 2010, 28, 369-375.	2.5	19
65	Surfactant-Mediated One-Pot Method To Prepare Pd–CeO ₂ Colloidal Assembled Spheres and Their Enhanced Catalytic Performance for CO Oxidation. ACS Omega, 2016, 1, 118-126.	1.6	19
66	Ambient Temperature NO Adsorber Derived from Pyrolysis of Co-MOF(ZIF-67). ACS Omega, 2019, 4, 9542-9551.	1.6	18
67	Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al ₂ O ₃ for Dry Reforming of CH ₄ : Elucidating the Induction Period and Its Excellent Resistance to Coking. ACS Applied Materials & Interfaces, 2021, 13, 58605-58618.	4.0	18
68	Synthesis and catalytic ammoxidation performance of hierarchical TS-1 prepared by steam-assisted dry gel conversion method: the effect of TPAOH amount. Journal of Materials Science, 2014, 49, 4341-4348.	1.7	16
69	Understanding the role of redox properties and NO adsorption over MnFeO _{<i>x</i>} for NH ₃ -SCR. Catalysis Science and Technology, 2022, 12, 2030-2041.	2.1	16
70	Deoxygenation of coal bed methane on LaCoO ₃ perovskite catalyst: the structure evolution and catalytic performance. RSC Advances, 2017, 7, 15211-15221.	1.7	15
71	Elimination of NO pollutant in semi-enclosed spaces over sodium-promoted cobalt oxyhydroxide (CoOOH) by oxidation and adsorption mechanism. Applied Catalysis B: Environmental, 2020, 279, 119404.	10.8	15
72	Catalytic combustion of vinyl chloride emissions over Co3O4 catalysts with different crystallite sizes. Rare Metals, 2021, 40, 817-827.	3.6	15

#	Article	IF	CITATIONS
73	Preparation of lamellar-stacked TS-1 and its catalytic performance for the ammoximation of butanone with H2O2. Journal of Materials Science, 2018, 53, 4034-4045.	1.7	14
74	Comparisons on thermal and water-resistance of Ru and Pd supported on cobalt-doped alumina nanosheets for catalytic combustion of propane. Applied Catalysis A: General, 2021, 628, 118398.	2.2	14
75	Low-temperature catalytic combustion of trichloroethylene over MnO -CeO2 mixed oxide catalysts. Journal of Rare Earths, 2023, 41, 523-530.	2.5	14
76	Ambient Temperature Formaldehyde Oxidation on the Pt/Na-ZSM-5 Catalyst: Tuning Adsorption Capacity and the Pt Chemical State. Industrial & Engineering Chemistry Research, 2021, 60, 7132-7144.	1.8	13
77	Robust nanosheet-assembled Al ₂ O ₃ -supported Ni catalysts for the dry reforming of methane: the effect of nickel content on the catalytic performance and carbon formation. New Journal of Chemistry, 2021, 45, 21750-21762.	1.4	12
78	Al2O3 supported hybrid Pd CeO2 colloidal spheres and its enhanced catalytic performances for methane combustion. Journal of Rare Earths, 2019, 37, 714-719.	2.5	11
79	Enhanced catalytic performance for selective oxidation of propene with O2 over bimetallic Au–Cu/SiO2 catalysts. Rare Metals, 2021, 40, 1056-1066.	3.6	10
80	Sm-MnO catalysts for low-temperature selective catalytic reduction of NO with NH3: Effect of precipitation agent. Journal of Rare Earths, 2022, 40, 1199-1210.	2.5	10
81	Catalytic wet oxidation of N,N-dimethyl formamide over ruthenium supported on CeO2 and Ce0.7Zr0.3O2 catalysts. Journal of Rare Earths, 2019, 37, 265-272.	2.5	9
82	Geometric effect of Au nanoclusters on room temperature CO oxidation. Chemical Communications, 2020, 56, 876-879.	2.2	8
83	Sb-Containing Metal Oxide Catalysts for the Selective Catalytic Reduction of NOx with NH3. Catalysts, 2020, 10, 1154.	1.6	8
84	Nickel oxide regulating surface oxygen to promote formaldehyde oxidation on manganese oxide catalysts. Catalysis Science and Technology, 2021, 11, 7110-7124.	2.1	7
85	Surface pits stabilized Au catalyst for low-temperature CO oxidation. Rare Metals, 2022, 41, 3060-3068.	3.6	7
86	Understanding the role of tungsten on Pt/CeO2 for vinyl chloride catalytic combustion. Journal of Rare Earths, 2022, 40, 1462-1470.	2.5	6
87	Regulating the Spatial Distribution of Ru Nanoparticles on CeO ₂ Support for Enhanced Propane Oxidation. ACS Applied Nano Materials, 2022, 5, 3937-3945.	2.4	6
88	Insight into the Surface-Tuned Activity and Cl ₂ /HCl Selectivity in the Catalytic Oxidation of Vinyl Chloride over Co ₃ O ₄ (110) versus (001): A DFT Study. Journal of Physical Chemistry C, 2021, 125, 16975-16983.	1.5	4
89	Low-Temperature NH3-SCR on Cex-Mn-Tiy Mixed Oxide Catalysts: Improved Performance by the Mutual Effect between Ce and Ti. Catalysts, 2022, 12, 471.	1.6	4
90	A new strategy to improve catalytic activity for chlorinated volatile organic compounds oxidation over cobalt oxide: Introduction of strontium carbonate. Journal of the Indian Chemical Society, 2021, 98, 100116.	1.3	3