Alexander Giovannitti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9468940/publications.pdf

Version: 2024-02-01

40 papers

3,615 citations

236925 25 h-index 315739 38 g-index

43 all docs

43 docs citations

43 times ranked

2411 citing authors

#	Article	IF	CITATIONS
1	Tuning Organic Electrochemical Transistor Threshold Voltage using Chemically Doped Polymer Gates. Advanced Materials, 2022, 34, .	21.0	14
2	Efficient Electronic Tunneling Governs Transport in Conducting Polymer-Insulator Blends. Journal of the American Chemical Society, 2022, 144, 10368-10376.	13.7	26
3	Conjugated Polymers for Microwave Applications: Untethered Sensing Platforms and Multifunctional Devices. Advanced Materials, 2022, 34, .	21.0	11
4	Polaron Delocalization in Donor–Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angewandte Chemie - International Edition, 2021, 60, 7777-7785.	13.8	84
5	Polaron Delocalization in Donor–Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angewandte Chemie, 2021, 133, 7856-7864.	2.0	16
6	Operation mechanism of organic electrochemical transistors as redox chemical transducers. Journal of Materials Chemistry C, 2021, 9, 12148-12158.	5.5	17
7	Highâ€Gain Chemically Gated Organic Electrochemical Transistor. Advanced Functional Materials, 2021, 31, 2010868.	14.9	46
8	Reversible Electrochemical Charging of n-Type Conjugated Polymer Electrodes in Aqueous Electrolytes. Journal of the American Chemical Society, 2021, 143, 14795-14805.	13.7	62
9	Redox-Active Polymers Designed for the Circular Economy of Energy Storage Devices. ACS Energy Letters, 2021, 6, 3450-3457.	17.4	18
10	Electrochemistry of Thin Films with In Situ/Operando Grazing Incidence Xâ€Ray Scattering: Bypassing Electrolyte Scattering for High Fidelity Time Resolved Studies. Small, 2021, 17, e2103213.	10.0	19
11	The Effect of Alkyl Spacers on the Mixed Ionicâ€Electronic Conduction Properties of Nâ€Type Polymers. Advanced Functional Materials, 2021, 31, 2008718.	14.9	67
12	Organic neuromorphic electronics for sensorimotor integration and learning in robotics. Science Advances, 2021, 7, eabl5068.	10.3	54
13	Reversible Electronic Solid–Gel Switching of a Conjugated Polymer. Advanced Science, 2020, 7, 1901144.	11.2	45
14	Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability. Advanced Materials, 2020, 32, e2002748.	21.0	181
15	Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Science Advances, 2020, 6, .	10.3	131
16	Energetic Control of Redoxâ€Active Polymers toward Safe Organic Bioelectronic Materials. Advanced Materials, 2020, 32, e1908047.	21.0	124
17	Conjugated Polymers: Reversible Electronic Solid–Gel Switching of a Conjugated Polymer (Adv. Sci.) Tj ETQq1	1 0.78431 11.2	.4 rgBT /Overl
18	Balancing Ionic and Electronic Conduction for Highâ€Performance Organic Electrochemical Transistors. Advanced Functional Materials, 2020, 30, 1907657.	14.9	131

#	Article	lF	Citations
19	Nanoscale Ion-Doped Polymer Transistors. Nano Letters, 2019, 19, 1712-1718.	9.1	25
20	Highly selective chromoionophores for ratiometric Na+ sensing based on an oligoethyleneglycol bridged bithiophene detection unit. Journal of Materials Chemistry C, 2019, 7, 5359-5365.	5.5	13
21	Design and evaluation of conjugated polymers with polar side chains as electrode materials for electrochemical energy storage in aqueous electrolytes. Energy and Environmental Science, 2019, 12, 1349-1357.	30.8	136
22	Role of the Anion on the Transport and Structure of Organic Mixed Conductors. Advanced Functional Materials, 2019, 29, 1807034.	14.9	116
23	Influence of Water on the Performance of Organic Electrochemical Transistors. Chemistry of Materials, 2019, 31, 927-937.	6.7	140
24	Double doping of conjugated polymers with monomer molecular dopants. Nature Materials, 2019, 18, 149-155.	27.5	225
25	Materials in Organic Electrochemical Transistors for Bioelectronic Applications: Past, Present, and Future. Advanced Functional Materials, 2019, 29, 1807033.	14.9	128
26	Redoxâ€Stability of Alkoxyâ€BDT Copolymers and their Use for Organic Bioelectronic Devices. Advanced Functional Materials, 2018, 28, 1706325.	14.9	77
27	The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes. Chemistry of Materials, 2018, 30, 2945-2953.	6.7	199
28	Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics. ACS Energy Letters, 2018, 3, 278-285.	17.4	220
29	Lipid bilayer formation on organic electronic materials. Journal of Materials Chemistry C, 2018, 6, 5218-5227.	5. 5	12
30	Visualizing the Solid–Liquid Interface of Conjugated Copolymer Films Using Fluorescent Liposomes. ACS Applied Bio Materials, 2018, 1, 1348-1354.	4.6	12
31	Subthreshold Operation of Organic Electrochemical Transistors for Biosignal Amplification. Advanced Science, 2018, 5, 1800453.	11.2	81
32	Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Science Advances, 2018, 4, eaat0911.	10.3	183
33	Liquid–Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing. ACS Applied Materials & Interfaces, 2017, 9, 38687-38694.	8.0	46
34	Sodium and Potassium Ion Selective Conjugated Polymers for Optical Ion Detection in Solution and Solid State. Advanced Functional Materials, 2016, 26, 514-523.	14.9	56
35	Controlling the mode of operation of organic transistors through side-chain engineering. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12017-12022.	7.1	364
36	Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors. Journal of the American Chemical Society, 2016, 138, 10252-10259.	13.7	270

#	Article	IF	CITATIONS
37	N-type organic electrochemical transistors with stability in water. Nature Communications, 2016, 7, 13066.	12.8	242
38	Single and Multiple Additions of Dibenzoylmethane onto Buckminsterfullerene. European Journal of Organic Chemistry, 2013, 2013, 7907-7913.	2.4	9
39	Local sensorimotor control and learning in robotics with organic neuromorphic electronics. , 0, , .		O
40	Critical analysis of self-doping and water-soluble n-type organic semiconductors: structures and mechanisms. Journal of Materials Chemistry C, 0 , , .	5 . 5	3