Krishna Bisetty

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9468870/krishna-bisetty-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

104 papers 2,365 citations

26 h-index

45 g-index

111 ext. papers

2,794 ext. citations

avg, IF

5.65 L-index

#	Paper	IF	Citations
104	A combined experimental-computational approach for electrocatalytic detection of epinephrine using nanocomposite sensor based on polyaniline/nickel oxide. <i>Journal of Electroanalytical Chemistry</i> , 2022 , 911, 116204	4.1	
103	Electrocatalysis of Endosulfan Based on FeO: An Experimental and Computational Approach. <i>ACS Omega</i> , 2021 , 6, 30515-30525	3.9	0
102	Measurement of TiO2 Nanoscale Ingredients in Sunscreens by Multidetector AF4, TEM, and spICP-MS Supported by Computational Modeling. <i>ACS Applied Nano Materials</i> , 2021 , 4, 4665-4675	5.6	5
101	Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods. <i>Pure and Applied Chemistry</i> , 2021 ,	2.1	1
100	Sensitivity Enhancement of Pre-Capillary Chelation Method for the Separation of Metal Ions: Experimental and DFT Study. <i>Current Analytical Chemistry</i> , 2021 , 17, 839-848	1.7	
99	Removal of Targeted Pharmaceuticals and Personal Care Products from Wastewater Treatment Plants using QSAR Model. <i>Current Analytical Chemistry</i> , 2021 , 17, 1003-1015	1.7	1
98	Separation of Sucralose in Food Samples using Amines as Background Electrolyte Supported with DFT Calculations. <i>Current Analytical Chemistry</i> , 2021 , 17, 989-1002	1.7	
97	Classification and functional analyses of putative virulence factors of Mycobacterium tuberculosis: A combined sequence and structure based study. <i>Computational Biology and Chemistry</i> , 2020 , 87, 10727	79 ^{.6}	
96	Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors. <i>Bioorganic Chemistry</i> , 2020 , 94, 103462	5.1	3
95	Highly-efficient electrochemical label-free immunosensor for the detection of ochratoxin A in coffee samples. <i>Sensors and Actuators B: Chemical</i> , 2020 , 305, 127438	8.5	30
94	Photoelectrochemical Bisphenol S Sensor Based on ZnO-Nanoroads Modified by Molecularly Imprinted Polypyrrole. <i>Macromolecular Chemistry and Physics</i> , 2020 , 221, 1900232	2.6	35
93	Multivariate optimization of field-flow fractionation of nanoscale synthetic amorphous silica in processed foods supported by computational modelling. <i>New Journal of Chemistry</i> , 2020 , 44, 17542-17.	534	2
92	Nanostructured pencil graphite electrodes for application as high power biocathodes in miniaturized biofuel cells and bio-batteries. <i>Scientific Reports</i> , 2020 , 10, 16535	4.9	3
91	Electrochemical Enzymatic Biosensing of Neotame Supported by Computational Methods. <i>Electroanalysis</i> , 2020 , 32, 2669-2680	3	5
90	Experimental and Computational Studies of a Laccase Immobilized ZnONPs/GO-Based Electrochemical Enzymatic Biosensor for the Detection of Sucralose in Food Samples. <i>Food Analytical Methods</i> , 2020 , 13, 2014-2027	3.4	11
89	An in-silico layer-by-layer adsorption study of the interaction between Rebaudioside A and the T1R2 human sweet taste receptor: modelling and biosensing perspectives. <i>Scientific Reports</i> , 2020 , 10, 18391	4.9	2
88	High Performance Electrochemical Biosensor for Bisphenol A Using Screen Printed Electrodes Modified with Multiwalled Carbon Nanotubes Functionalized with Silver-Doped Zinc Oxide. <i>Waste and Biomass Valorization</i> , 2020 , 11, 1085-1096	3.2	18

(2017-2020)

87	The structural basis of acid resistance in : insights from multiple pH regime molecular dynamics simulations. <i>Journal of Biomolecular Structure and Dynamics</i> , 2020 , 38, 4483-4492	3.6	2
86	Computational studies on the molecular insights of aptamer induced poly(N-isopropylacrylamide)-graft-graphene oxide for on/off- switchable whole-cell cancer diagnostics. <i>Scientific Reports</i> , 2019 , 9, 7873	4.9	8
85	Nanotechnology-based water quality management for wastewater treatment. <i>Environmental Chemistry Letters</i> , 2019 , 17, 65-121	13.3	70
84	Theoretical insights into the competitive metal bioaffinity of lactoferrin as a metal ion carrier: a DFT study. <i>New Journal of Chemistry</i> , 2019 , 43, 16374-16384	3.6	7
83	MWCNTs-Fe2O3nanoparticle nanohybrid-based highly sensitive electrochemicalsensor for the detection of kaempferol in broccoli samples. <i>Turkish Journal of Chemistry</i> , 2019 , 43, 1229-1243	1	4
82	Biogenic synthesis of nanoparticles: A review. <i>Arabian Journal of Chemistry</i> , 2019 , 12, 3576-3600	5.9	335
81	Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: An approach to equilibrium and kinetic study. <i>Arabian Journal of Chemistry</i> , 2019 , 12, 4331-4339	5.9	40
80	Selectivity and sensitivity enhanced green energy waste based indirect-Bolid phase extraction of carbaryl supported by DFT and molecular docking studies. <i>Journal of Molecular Liquids</i> , 2018 , 257, 112-1	20	8
79	Membrane technology for water purification. Environmental Chemistry Letters, 2018, 16, 343-365	13.3	38
78	One-pot biosynthesis of silver nanoparticles using Iboza Riparia and Ilex Mitis for cytotoxicity on human embryonic kidney cells. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2018 , 178, 560-56	5 7 .7	17
77	Structural basis of pesticide detection by enzymatic biosensing: a molecular docking and MD simulation study. <i>Journal of Biomolecular Structure and Dynamics</i> , 2018 , 36, 1402-1416	3.6	13
76	Light induced DNA-functionalized TiO nanocrystalline interface: Theoretical and experimental insights towards DNA damage detection. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2018 , 188, 159-176	6.7	8
75	Special Properties of Nanomaterials for Chromatography 2018 , 37-54		
74	Role of Computational Tools in Designing Enzymatic Biosensors for the Detection of Pesticides in Environment 2018 , 287-311		
73	Smartphone based bioanalytical and diagnosis applications: A review. <i>Biosensors and Bioelectronics</i> , 2018 , 102, 136-149	11.8	174
72	Green synthesis, characterization and electrochemical sensing of silymarin by ZnO nanoparticles: Experimental and DFT studies. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 808, 160-172	4.1	39
71	Structural insights into Rab21 GTPase activation mechanism by molecular dynamics simulations. <i>Molecular Simulation</i> , 2018 , 44, 179-189	2	12
70	Classification and Functional Analyses of Putative Conserved Proteins from Chlamydophila pneumoniae CWL029. <i>Interdisciplinary Sciences, Computational Life Sciences</i> , 2017 , 9, 96-106	3.5	1

69	Effect of pH on structure, function, and stability of mitochondrial carbonic anhydrase VA. <i>Journal of Biomolecular Structure and Dynamics</i> , 2017 , 35, 449-461	3.6	21
68	Urea-induced denaturation of human calcium/calmodulin-dependent protein kinase IV: a combined spectroscopic and MD simulation studies. <i>Journal of Biomolecular Structure and Dynamics</i> , 2017 , 35, 463	3- 47 5	24
67	Structure prediction and functional analyses of a thermostable lipase obtained from Shewanella putrefaciens. <i>Journal of Biomolecular Structure and Dynamics</i> , 2017 , 35, 2123-2135	3.6	30
66	Nanopolymer Chitosan in Cancer and Alzheimer Biomedical Application 2017 , 311-359		1
65	A Review of Gold and Silver Nanoparticle-Based Colorimetric Sensing Assays. <i>Advanced Engineering Materials</i> , 2017 , 19, 1700270	3.5	143
64	Molecular dynamics simulation of chitinase I from Thermomyces lanuginosus SSBP to ensure optimal activity. <i>Molecular Simulation</i> , 2017 , 43, 480-490	2	5
63	Robust adsorption of Direct Navy Blue-106 from textile industrial effluents by bio-hydrogen fermented waste derived activated carbon: Equilibrium and kinetic studies. <i>Arabian Journal of Chemistry</i> , 2017 , 10, S3084-S3096	5.9	9
62	Multivariate optimization of differential pulse polarographic atalytic hydrogen wave technique for the determination of nickel(II) in real samples. <i>Arabian Journal of Chemistry</i> , 2017 , 10, S2260-S2272	5.9	5
61	A Mini-Review on Enantiomeric Separation of Ofloxacin using Capillary Electrophoresis: Pharmaceutical Applications 2017 , 117-146		
60	Molecular Simulation of Chiral Selector-Enantiomer Interactions through Docking: Antimalarial Drugs as Case Study 2017 , 363-384		
59	Cloning, expression, and molecular dynamics simulations of a xylosidase obtained from Thermomyces lanuginosus. <i>Journal of Biomolecular Structure and Dynamics</i> , 2016 , 34, 1681-92	3.6	38
58	Insight into the biosensing of graphene oxide: Present and future prospects. <i>Arabian Journal of Chemistry</i> , 2016 , 9, 238-261	5.9	76
57	Spectrophotometric determination of nickel (II) in waters and soils: Novel chelating agents and their biological applications supported by DFT method. <i>Karbala International Journal of Modern Science</i> , 2016 , 2, 239-250	4.6	13
56	Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: Synergistic antibacterial activity and molecular simulated facet specific adsorption studies. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2016 , 162, 199-207	6.7	96
55	Effect of pH on the structure, function, and stability of human calcium/calmodulin-dependent protein kinase IV: combined spectroscopic and MD simulation studies. <i>Biochemistry and Cell Biology</i> , 2016 , 94, 221-8	3.6	28
54	An ultrasensitive performance enhanced novel cytochrome c biosensor for the detection of rebaudioside A. <i>Biosensors and Bioelectronics</i> , 2016 , 77, 116-23	11.8	21
53	Large scale analysis of the mutational landscape in Eglucuronidase: A major player of mucopolysaccharidosis type VII. <i>Gene</i> , 2016 , 576, 36-44	3.8	67
52	Monitoring of Cetylpyridinium Chloride Levels in Surface Waters: Patent Blue-V as Selective Ligand for Spectrophotometric Determination. <i>Asian Journal of Chemistry</i> , 2016 , 28, 1039-1042	0.4	4

(2014-2016)

Current Advances in the Identification and Characterization of Putative Drug and Vaccine Targets in the Bacterial Genomes. <i>Current Topics in Medicinal Chemistry</i> , 2016 , 16, 1040-69	3	18	
Hybrid of ZnONPs/MWCNTs for electrochemical detection of aspartame in food and beverage samples. <i>Journal of Electroanalytical Chemistry</i> , 2016 , 774, 51-57	4.1	19	
A pH based molecular dynamics simulations of chitinase II isolated from Thermomyces lanuginosus SSBP. <i>Cogent Biology</i> , 2016 , 2, 1168336	1.6	2	
Electrochemical sensing platform amplified with a nanobiocomposite of L-phenylalanine ammonia-lyase enzyme for the detection of capsaicin. <i>Biosensors and Bioelectronics</i> , 2016 , 83, 45-53	11.8	29	
Towards New Drug Targets? Function Prediction of Putative Proteins of Neisseria meningitidis MC58 and Their Virulence Characterization. <i>OMICS A Journal of Integrative Biology</i> , 2015 , 19, 416-34	3.8	17	
Thermostable chitinase II from Thermomyces lanuginosus SSBP: Cloning, structure prediction and molecular dynamics simulations. <i>Journal of Theoretical Biology</i> , 2015 , 374, 107-14	2.3	47	
In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309. <i>Computational Biology and Chemistry</i> , 2015 , 59 Pt A, 67-80	3.6	22	
PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4. <i>Journal of Molecular Graphics and Modelling</i> , 2015 , 62, 245-252	2.8	25	
Studies on Bacterial Proteins Corona Interaction with Saponin Imprinted ZnO Nanohoneycombs and Their Toxic Responses. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 23848-56	9.5	11	
Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications. <i>Extremophiles</i> , 2015 , 19, 1055-66	3	32	
Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame. <i>Biosensors and Bioelectronics</i> , 2015 , 67, 200-7	11.8	28	
Analytical evaluation of steviol glycosides by capillary electrophoresis supported with molecular docking studies. <i>Journal of the Iranian Chemical Society</i> , 2015 , 12, 127-136	2	10	
Seasonal Variation and Distribution of Anionic Surfactants in and around Tirupati: A Famous Pilgrim Centre in South India. <i>Asian Journal of Chemistry</i> , 2015 , 27, 3655-3657	0.4	2	
Designing New Kinase Inhibitor Derivatives as Therapeutics Against Common Complex Diseases: Structural Basis of Microtubule Affinity-Regulating Kinase 4 (MARK4) Inhibition. <i>OMICS A Journal of Integrative Biology</i> , 2015 , 19, 700-11	3.8	39	
Role of N-terminal residues on folding and stability of C-phycoerythrin: simulation and urea-induced denaturation studies. <i>Journal of Biomolecular Structure and Dynamics</i> , 2015 , 33, 121-33	3.6	53	
Functional Insight into Putative Conserved Proteins of Rickettsia rickettsii and their Virulence Characterization. <i>Current Proteomics</i> , 2015 , 12, 101-116	0.7	5	
Development of Green Energy Waste Activated Carbon for Removal of Trivalent Chromium: Equilibrium and Kinetic Modeling. <i>Separation Science and Technology</i> , 2014 , 49, 513-522	2.5	11	
Triflic acid promoted fries rearrangement of C-3 vinyl/isopropenyl-azetidin-2-ones: single-pot synthesis of C-3 functionalized-2-aryl-2,3-dihydro-quinoline-4(1H)-ones. <i>RSC Advances</i> , 2014 , 4, 41793-4	13801	7	
	the Bacterial Genomes. Current Topics in Medicinal Chemistry, 2016, 16, 1040-69 Hybrid of ZnONPs/MWCNTs for electrochemical detection of aspartame in food and beverage samples. Journal of Electroanalytical Chemistry, 2016, 774, 51-57 A pH based molecular dynamics simulations of chitinase II isolated from Thermomyces lanuginosus SSBP. Cogent Biology, 2016, 2, 1168336 Electrochemical sensing platform amplified with a nanobiocomposite of L-phenylalanine ammonia-lyase enzyme for the detection of capsaicin. Biosensors and Bioelectronics, 2016, 83, 45-53 Towards New Drug Targets? Function Prediction of Putative Proteins of Neisseria meningitidis MCSB and Their Virulence Characterization. OMICS A Journal of Integrative Biology, 2015, 19, 416-34 Thermostable chitinase II from Thermomyces lanuginosus SSBP: Cloning, structure prediction and molecular dynamics simulations. Journal of Theoretical Biology, 2015, 374, 107-14 In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumonina 309. Computational Biology and Chemistry, 2015, 59 Pt A, 67-80 PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4. Journal of Molecular Graphics and Modelling, 2015, 62, 245-252 Studies on Bacterial Proteins Corona Interaction with Saponin Imprinted ZnO Nanohoneycombs and Their Toxic Responses. ACS Applied Materials & Bamp; Interfaces, 2015, 7, 23848-56 Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications. Extremophilles 2015, 19, 1055-66 Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame. Biosensors and Bioelectronics, 2015, 67, 200-7 Analytical evaluation of steviol glycosides by capillary electrophoresis supported with molecular docking studies. Journal of the Iranian Chemical Society, 2015, 12, 127-136 Seasonal Variation and Distribution of Anionic Surfactants in and around Tirupati: A Famous Pilgrim Centre in	Hybrid of ZnONPs/MWCNTs for electrochemical detection of aspartame in food and beverage samples. Journal of Electroanalytical Chemistry, 2016, 774, 51-57 A pH based molecular dynamics simulations of chitinase II isolated from Thermomyces lanuginosus SSBP. Cogent Biology, 2016, 2, 1168336 Electrochemical sensing platform amplified with a nanobiocomposite of L-phenylalanine ammonial-yase enzyme for the detection of capsaicin. Biosensors and Bioelectronics, 2016, 83, 45-53 Towards New Drug Targets? Function Prediction of Putative Proteins of Neisseria meningitidis MCSB and Their Virulence Characterization. OMICS A Journal of Integrative Biology, 2015, 19, 416-34 Thermostable chitinase II from Thermomyces lanuginosus SSBP: Cloning, structure prediction and molecular dynamics simulations. Journal of Theoretical Biology, 2015, 374, 107-14 In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309. Computational Biology and Chemistry, 2015, 59 Pt A, 67-80 PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4. Journal of Molecular Graphics and Modelling, 2015, 62, 245-252 Studies on Bacterial Proteins Corona Interaction with Saponin Imprinted ZnO Nanohoneycombs and Their Toxic Responses. ACS Applied Materials & Bamp; Interfaces, 2015, 7, 23848-56 Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications. Extremaphiles, 2015, 19, 1055-66 Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications. Extremaphiles, 2015, 67, 200-7 Analytical evaluation of steviol glycosides by capillary electrophoresis supported with molecular docking studies. Journal of the liminar Chemical Society, 2015, 12, 127-136 Seasonal Variation and Distribution of Anionic Surfactants in and around Tirupati: A Famous Pilgrim centre in South India. Asian Journal of Chemistry, 2015, 27, 3655-3657 Designing New Kinase Inhibitor Derivatives as Therapeutics Against Common Complex Diseases: Structural	Hybrid of ZnONPs/MWCNTs for electrochemical detection of aspartame in food and beverage samples. <i>Journal of Electrochaepitical Chemistry</i> , 2016, 774, 51-57 A pH based molecular dynamics simulations of chitinase II isolated from Thermomyces lanuginosus 5SBP. <i>Cogent Biology</i> , 2016, 2, 1168336 Electrochemical sensing platform amplified with a nanobiocomposite of L-phenylalanine ammonia-lyase enzyme for the detection of capsaicin. <i>Biosensors and Bioelectronics</i> , 2016, 83, 45-53 Towards New Drug Targets? Function Prediction of Putative Proteins of Neisseria meningitidis MCSB and Their Virulence Characterization. <i>OMICS A Journal of Integrative Biology</i> , 2015, 19, 416-34 In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309. <i>Computational Biology and Chemistry</i> , 2015, 59 Pt A, 67-80 PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4. <i>Journal of Molecular Graphics and Modelling</i> , 2015, 62, 245-252 Studies on Bacterial Proteins Corona Interaction with Saponin Imprinted ZnO Nanohoneycombs and Their Toxic Responses. <i>ACS Applied Materials Ramp; Interfaces</i> , 2015, 7, 23848-56 Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications. <i>Extremaphiles</i> , 2015, 19, 1055-66 Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications. <i>Extremaphiles</i> , 2015, 67, 200-7 Analytical evaluation of steviol glycosides by capillary electrophoresis supported with molecular docking studies. <i>Journal of the Iranian Chemical Society</i> , 2015, 12, 127-136 Seasonal Variation and Distribution of Anionic Surfactants in and around Tirupati: A Famous Pilgrim Centre in South India. <i>Asian Journal of Chemistry</i> , 2015, 27, 3655-3657 Designing New Kinase Inhibitor Derivatives as Therapeutics Against Common Complex Diseases: Structural Basis of Microtubule Affinity-Regulating Kinase 4 (MARK4) Inhibition. <i>OMICS A Journal of Innegrative Biology</i> , 2015, 19, 700-11 Role of N-terminal residue

33	Creation of thermostable and alkaline stable xylanase variants by DNA shuffling. <i>Journal of Biotechnology</i> , 2014 , 187, 139-46	3.7	53
32	Electrochemical Determination of Capsaicin and Silymarin Using a Glassy Carbon Electrode Modified by Gold Nanoparticle Decorated Multiwalled Carbon Nanotubes. <i>Analytical Letters</i> , 2014 , 47, 2813-2828	2.2	34
31	Determination of Neotame by High-Performance Capillary Electrophoresis Using Ecyclodextrin as a Chiral Selector. <i>Analytical Letters</i> , 2014 , 47, 2795-2812	2.2	8
30	Dithiocarbamates as hazardous remediation agent: A critical review on progress in environmental chemistry for inorganic species studies of 20th century. <i>Arabian Journal of Chemistry</i> , 2014 , 7, 11-25	5.9	108
29	£Lactam-Synthon-Interceded Synthesis of Isatin-Imidazolidine-2-thione Conjugates with Structural Validation using Molecular Dynamic Simulations and Cytotoxic Evaluation. <i>Synlett</i> , 2013 , 24, 1865-1869	2.2	7
28	Synthesis, docking and in vitro antimalarial evaluation of bifunctional hybrids derived from Elactams and 7-chloroquinoline using click chemistry. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2012 , 22, 57-61	2.9	54
27	Connecting simulated, bioanalytical, and molecular docking data on the stereoselective binding of (日)-catechin to human serum albumin. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 402, 1899-909	4.4	9
26	Synthetic Studies on the Role of Substituents at C-3 Position on C3-C4 Bond Cleavage of Lactam Ring: Convenient Route for Diastereoselective Synthesis of Pyridin-2-ones. <i>Heterocycles</i> , 2012 , 86, 1301	0.8	4
25	Experimental-like affinity constants and enantioselectivity estimates from flexible docking. <i>Journal of Chemical Information and Modeling</i> , 2012 , 52, 2754-9	6.1	10
24	Theoretical study on the formation of a pentacyclo-undecane cage lactam. <i>Computational and Theoretical Chemistry</i> , 2012 , 986, 63-70	2	8
23	Regio- and Diastereoselective Nitroso Diels-Alder Cycloaddition Reactions of 3-dienyl-2-azetidinones with Nitrosoarenes. <i>Letters in Organic Chemistry</i> , 2012 , 9, 411-421	0.6	3
22	Preparation, spectrochemical, and computational analysis of L-carnosine (2-[(3-aminopropanoyl)amino]-3-(1H-imidazol-5-yl)propanoic acid) and its ruthenium (II) coordination complexes in aqueous solution. <i>Molecules</i> , 2011 , 16, 10269-91	4.8	18
21	A computational study of Neuromedin B. Computational and Theoretical Chemistry, 2011, 971, 1-7	2	
20	Comparative structural studies of T-20 analogues using molecular dynamics. <i>Computational and Theoretical Chemistry</i> , 2011 , 974, 122-132	2	2
19	Conformational space search of Neuromedin C using replica exchange molecular dynamics and molecular dynamics. <i>Journal of Peptide Science</i> , 2011 , 17, 174-83	2.1	1
18	Computational study of the free energy landscape of the miniprotein CLN025 in explicit and implicit solvent. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 1440-9	3.4	11
17	Synthesis and docking studies of thiophene scaffolds in COX-2. <i>Arkivoc</i> , 2011 , 2011, 55-70	0.9	10
16	Molecular dynamics simulations of Ac-3Aib-Cage-3Aib-NHMe. <i>Molecular Simulation</i> , 2010 , 36, 1035-104	42	9

LIST OF PUBLICATIONS

15	Conformational profile of bombesin assessed using different computational protocols. <i>Journal of Molecular Graphics and Modelling</i> , 2010 , 29, 581-90	2.8	1
14	Molecular dynamics (MD) simulations of VIP and PACAP27. <i>Biopolymers</i> , 2009 , 91, 391-400	2.2	6
13	Cycloaddition reactions of cross-conjugated enaminones. <i>Tetrahedron</i> , 2009 , 65, 8478-8485	2.4	22
12	Conformational study of the PCU cage monopeptide: a key role of some force-field parameters. Journal of Physical Chemistry B, 2009 , 113, 5234-8	3.4	
11	Determination of lead and cadmium in seawater by differential pulse anodic stripping voltammetry: fit-for-purpose partial validation and internal quality aspects. <i>Analytical and Bioanalytical Chemistry</i> , 2008 , 392, 277-86	4.4	2
10	Trishomocubane amino acid as a beta-turn scaffold. Chemical Biology and Drug Design, 2008, 71, 125-30	2.9	20
9	A molecular dynamics study of the pentacyclo-undecane (PCU) cage polypeptides of the type Ac-3Ala-Cage-3Ala-NHMe. <i>Molecular Simulation</i> , 2007 , 33, 1105-1108	2	6
8	Analysis of the conformational profile of trishomocubane amino acid dipeptide. <i>Biopolymers</i> , 2006 , 81, 339-49	2.2	15
7	A theoretical study of pentacyclo-undecane cage peptides of the type [Ac-X-Y-NHMe]. <i>Journal of Peptide Science</i> , 2006 , 12, 92-105	2.1	21
6	Simulated annealing study of the pentacyclo-undecane cage amino acid tripeptides of the type [Ac-X-Y-Z-NHMe]. <i>Computational and Theoretical Chemistry</i> , 2006 , 759, 145-157		12
5	A molecular dynamics study of the pentacyclo-undecane cage amino acid tripeptide. <i>Computational and Theoretical Chemistry</i> , 2006 , 770, 221-228		8
4	Conformational analysis of small peptides of the type AcXNHMe, where X=Gly, Ala, Aib and Cage. <i>Computational and Theoretical Chemistry</i> , 2005 , 731, 127-137		26
3	Computational study of the conformational preferences of the (R)-8-amino-pentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecane-8-carboxylic acid monopeptide. <i>Journal of Peptide Science</i> , 2004 , 10, 274-84	2.1	18
2	Functionalized Electrochemical Aptasensor for Sensing of Ochratoxin A in Cereals Supported by in Silico Adsorption Studies. <i>ACS Food Science & Technology</i> ,		1
1	CHAPTER 1:Perspective on Analytical Sciences and Nanotechnology. RSC Detection Science,1-34	0.4	5