
Eran Meshorer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9468752/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Hyperdynamic Plasticity of Chromatin Proteins in Pluripotent Embryonic Stem Cells. Developmental Cell, 2006, 10, 105-116.	3.1	915
2	Chromatin in pluripotent embryonic stem cells and differentiation. Nature Reviews Molecular Cell Biology, 2006, 7, 540-546.	16.1	633
3	Global Transcription in Pluripotent Embryonic Stem Cells. Cell Stem Cell, 2008, 2, 437-447.	5.2	603
4	Chromatin organization marks exon-intron structure. Nature Structural and Molecular Biology, 2009, 16, 990-995.	3.6	569
5	Glycolysis-Mediated Changes in Acetyl-CoA and Histone Acetylation Control the Early Differentiation of Embryonic Stem Cells. Cell Metabolism, 2015, 21, 392-402.	7.2	541
6	Open chromatin in pluripotency and reprogramming. Nature Reviews Molecular Cell Biology, 2011, 12, 36-47.	16.1	497
7	Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature, 2009, 460, 863-868.	13.7	449
8	Nuclear lamins: key regulators of nuclear structure and activities. Journal of Cellular and Molecular Medicine, 2009, 13, 1059-1085.	1.6	228
9	Alternative Splicing and Neuritic mRNA Translocation Under Long-Term Neuronal Hypersensitivity. Science, 2002, 295, 508-512.	6.0	220
10	Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Reports, 2015, 16, 1609-1619.	2.0	196
11	Reconstructing the DNA Methylation Maps of the Neandertal and the Denisovan. Science, 2014, 344, 523-527.	6.0	188
12	HP1 Is Involved in Regulating the Global Impact of DNA Methylation on Alternative Splicing. Cell Reports, 2015, 10, 1122-1134.	2.9	179
13	Virtues and woes of AChE alternative splicing in stress-related neuropathologies. Trends in Neurosciences, 2006, 29, 216-224.	4.2	173
14	The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science, 2016, 353, .	6.0	147
15	Higher chromatin mobility supports totipotency and precedes pluripotency in vivo. Genes and Development, 2014, 28, 1042-1047.	2.7	135
16	Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation. Nature Communications, 2012, 3, 910.	5.8	127
17	Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Current Opinion in Cell Biology, 2010, 22, 334-341.	2.6	118
18	Global epigenetic changes during somatic cell reprogramming to iPS cells. Journal of Molecular Cell Biology, 2011, 3, 341-350.	1.5	110

ERAN MESHORER

#	Article	lF	CITATIONS
19	Combinatorial Complexity of 5′ Alternative Acetylcholinesterase Transcripts and Protein Products. Journal of Biological Chemistry, 2004, 279, 29740-29751.	1.6	106
20	Stress-induced epigenetic transcriptional memory of acetylcholinesterase by HDAC4. Proceedings of the United States of America, 2012, 109, E3687-95.	3.3	104
21	SF3B1 Association with Chromatin Determines Splicing Outcomes. Cell Reports, 2015, 11, 618-629.	2.9	95
22	A Parkinson's disease Circ <scp>RNA</scp> s Resource reveals a link between circ <scp>SLC</scp> 8A1 and oxidative stress. EMBO Molecular Medicine, 2020, 12, e11942.	3.3	93
23	Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Developmental Cell, 2019, 48, 135-150.	3.1	80
24	Defects in Pre-mRNA Processing as Causes of and Predisposition to Diseases. DNA and Cell Biology, 2002, 21, 803-818.	0.9	77
25	Preâ€mRNA splicing modulations in senescence. Aging Cell, 2002, 1, 10-16.	3.0	77
26	SC35 promotes sustainable stress-induced alternative splicing of neuronal acetylcholinesterase mRNA. Molecular Psychiatry, 2005, 10, 985-997.	4.1	75
27	Gone with the Wnt/Notch: stem cells in laminopathies, progeria, and aging. Journal of Cell Biology, 2008, 181, 9-13.	2.3	75
28	PAX6 Regulates Melanogenesis in the Retinal Pigmented Epithelium through Feed-Forward Regulatory Interactions with MITF. PLoS Genetics, 2014, 10, e1004360.	1.5	75
29	Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nature Communications, 2014, 5, 4181.	5.8	71
30	H3K9 histone acetylation predicts pluripotency and reprogramming capacity of ES cells. Nucleus, 2011, 2, 300-309.	0.6	69
31	Differential DNA methylation of vocal and facial anatomy genes in modern humans. Nature Communications, 2020, 11, 1189.	5.8	69
32	Pluripotency-related, Valproic Acid (VPA)-induced Genome-wide Histone H3 Lysine 9 (H3K9) Acetylation Patterns in Embryonic Stem Cells. Journal of Biological Chemistry, 2011, 286, 35977-35988.	1.6	68
33	HMGN1 Modulates Nucleosome Occupancy and DNase I Hypersensitivity at the CpG Island Promoters of Embryonic Stem Cells. Molecular and Cellular Biology, 2013, 33, 3377-3389.	1.1	68
34	Transition from Anaerobic to Aerobic Growth Conditions for the Sulfate-Reducing Bacterium Desulfovibrio oxyclinae Results in Flocculation. Applied and Environmental Microbiology, 2000, 66, 5005-5012.	1.4	64
35	Chromatin and nuclear architecture in the nervous system. Trends in Neurosciences, 2008, 31, 343-352.	4.2	58
36	Epigenetics: It's Getting Old. Past Meets Future in Paleoepigenetics. Trends in Ecology and Evolution, 2016, 31, 290-300.	4.2	58

ERAN MESHORER

#	Article	IF	CITATIONS
37	Heterochromatin Protein $1\hat{l}^2$ (HP $1\hat{l}^2$) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells. Genome Biology, 2015, 16, 213.	3.8	55
38	Reconstructing Denisovan Anatomy Using DNA Methylation Maps. Cell, 2019, 179, 180-192.e10.	13.5	51
39	Transcription Factors Bind Negatively Selected Sites within Human mtDNA Genes. Genome Biology and Evolution, 2014, 6, 2634-2646.	1.1	47
40	Differential Association of Chromatin Proteins Identifies BAF60a/SMARCD1 as a Regulator of Embryonic Stem Cell Differentiation. Cell Reports, 2015, 10, 2019-2031.	2.9	47
41	Mesoscale Modeling and Single-Nucleosome Tracking Reveal Remodeling of Clutch Folding and Dynamics in Stem Cell Differentiation. Cell Reports, 2021, 34, 108614.	2.9	47
42	Residual Expression of Reprogramming Factors Affects the Transcriptional Program and Epigenetic Signatures of Induced Pluripotent Stem Cells. PLoS ONE, 2012, 7, e51711.	1.1	43
43	Multilayered chromatin analysis reveals E2f, Smad and Zfx as transcriptional regulators of histones. Nature Structural and Molecular Biology, 2013, 20, 119-126.	3.6	41
44	Synaptogenesis and Myopathy Under Acetylcholinesterase Overexpression. Journal of Molecular Neuroscience, 2000, 14, 093-106.	1.1	40
45	Live imaging of induced and controlled DNA double-strand break formation reveals extremely low repair by homologous recombination in human cells. Oncogene, 2012, 31, 3495-3504.	2.6	40
46	AUTS2 isoforms control neuronal differentiation. Molecular Psychiatry, 2021, 26, 666-681.	4.1	36
47	Chronic cholinergic imbalances promote brain diffusion and transport abnormalities. FASEB Journal, 2005, 19, 910-922.	0.2	35
48	A high-throughput chemical screen with FDA approved drugs reveals that the antihypertensive drug Spironolactone impairs cancer cell survival by inhibiting homology directed repair. Nucleic Acids Research, 2014, 42, 5689-5701.	6.5	35
49	Polyglutamine (polyQ) disorders. Nucleus, 2012, 3, 433-441.	0.6	34
50	Chromatin plasticity in pluripotent cells. Essays in Biochemistry, 2010, 48, 245-262.	2.1	34
51	PARP1-dependent eviction of the linker histone H1 mediates immediate early gene expression during neuronal activation. Journal of Cell Biology, 2018, 217, 473-481.	2.3	32
52	Vimentin protects differentiating stem cells from stress. Scientific Reports, 2020, 10, 19525.	1.6	32
53	Transcriptional competence in pluripotency: Figure 1 Genes and Development, 2009, 23, 2793-2798.	2.7	30
54	Non-polyadenylated transcription in embryonic stem cells reveals novel non-coding RNA related to pluripotency and differentiation. Nucleic Acids Research, 2013, 41, 6300-6315.	6.5	28

Eran Meshorer

#	Article	lF	CITATIONS
55	BindDB: An Integrated Database and Webtool Platform for "Reverse-ChIP―Epigenomic Analysis. Cell Stem Cell, 2015, 17, 647-648.	5.2	28
56	A hyperdynamic H3.3 nucleosome marks promoter regions in pluripotent embryonic stem cells. Nucleic Acids Research, 2017, 45, 12181-12194.	6.5	28
57	Glioblastoma initiating cells are sensitive to histone demethylase inhibition due to epigenetic deregulation. International Journal of Cancer, 2020, 146, 1281-1292.	2.3	27
58	Concise Review: Chromatin and Genome Organization in Reprogramming. Stem Cells, 2012, 30, 1793-1799.	1.4	26
59	Chromatin Immunoprecipitation in Mouse Hippocampal Cells and Tissues. Methods in Molecular Biology, 2012, 809, 353-364.	0.4	25
60	Spironolactone inhibits the growth of cancer stem cells by impairing DNA damage response. Oncogene, 2019, 38, 3103-3118.	2.6	24
61	Stem cells do play with dice: A statistical physics view of transcription. Cell Cycle, 2009, 8, 43-48.	1.3	20
62	The HDAC interaction network. Molecular Systems Biology, 2013, 9, 671.	3.2	19
63	Alternative SET/TAFI Promoters Regulate Embryonic Stem Cell Differentiation. Stem Cell Reports, 2017, 9, 1291-1303.	2.3	19
64	An Endogenously Tagged Fluorescent Fusion Protein Library in Mouse Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 1304-1314.	2.3	19
65	Photobleaching Assays (FRAP & FLIP) to Measure Chromatin Protein Dynamics in Living Embryonic Stem Cells. Journal of Visualized Experiments, 2011, , .	0.2	18
66	Elucidating the temporal dynamics of chromatin-associated protein release upon DNA digestion by quantitative proteomic approach. Journal of Proteomics, 2012, 75, 5493-5506.	1.2	16
67	Progerin-Induced Transcriptional Changes in Huntington's Disease Human Pluripotent Stem Cell-Derived Neurons. Molecular Neurobiology, 2020, 57, 1768-1777.	1.9	16
68	The upstream 5′ splice site remains associated to the transcription machinery during intron synthesis. Nature Communications, 2021, 12, 4545.	5.8	16
69	Splicing Misplaced. Cell, 2005, 122, 317-318.	13.5	15
70	Regulation by alternative splicing. Nature, 2013, 498, 176-177.	13.7	14
71	The Chromatin Regulator ZMYM2 Restricts Human Pluripotent Stem Cell Growth and Is Essential for Teratoma Formation. Stem Cell Reports, 2020, 15, 1275-1286.	2.3	13
72	Organization of the Pluripotent Genome. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040204.	2.3	13

Eran Meshorer

#	Article	IF	CITATIONS
73	Systematic Determination of Replication Activity Type Highlights Interconnections between Replication, Chromatin Structure and Nuclear Localization. PLoS ONE, 2012, 7, e48986.	1.1	13
74	Elimination of undifferentiated cancer cells by pluripotent stem cell inhibitors. Journal of Molecular Cell Biology, 2014, 6, 267-269.	1.5	12
75	Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nature Communications, 2021, 12, 6718.	5.8	12
76	Histone H1 eviction by the histone chaperone SET reduces cell survival following DNA damage. Journal of Cell Science, 2020, 133, .	1.2	11
77	Predicted Archaic 3D Genome Organization Reveals Genes Related to Head and Spinal Cord Separating Modern from Archaic Humans. Cells, 2020, 9, 48.	1.8	11
78	NURD keeps chromatin young. Nature Cell Biology, 2009, 11, 1176-1177.	4.6	10
79	The Silence of the LADs: Dynamic Genome-Lamina Interactions during ESC Differentiation. Cell Stem Cell, 2010, 6, 495-497.	5.2	9
80	Asynchronous transcriptional silencing of individual retroviral genomes in embryonic cells. Retrovirology, 2014, 11, 31.	0.9	9
81	Systematic identification of gene family regulators in mouse and human embryonic stem cells. Nucleic Acids Research, 2016, 44, 4080-4089.	6.5	9
82	Open chromatin structure in PolyQ disease-related genes: a potential mechanism for CAG repeat expansion in the normal human population. NAR Genomics and Bioinformatics, 2019, 1, e3-e3.	1.5	9
83	Transcription Factor Binding in Embryonic Stem Cells Is Constrained by DNA Sequence Repeat Symmetry. Biophysical Journal, 2020, 118, 2015-2026.	0.2	9
84	Rejuvenating premature aging. Nature Medicine, 2008, 14, 713-715.	15.2	8
85	Dppa2 and Dppa4 safeguard bivalent chromatin in order to establish a pluripotent epigenome. Nature Structural and Molecular Biology, 2020, 27, 685-686.	3.6	7
86	SON sheds light on RNA splicing and pluripotency. Nature Cell Biology, 2013, 15, 1139-1140.	4.6	6
87	Pluripotent stem cell-derived models of neurological diseases reveal early transcriptional heterogeneity. Genome Biology, 2021, 22, 73.	3.8	6
88	Systems analysis utilising pathway interactions identifies sonic hedgehog pathway as a primary biomarker and oncogenic target in hepatocellular carcinoma. IET Systems Biology, 2013, 7, 243-251.	0.8	5
89	Harnessing epigenetics to study human evolution. Current Opinion in Genetics and Development, 2020, 62, 23-29.	1.5	5
90	Measuring the Dynamics of Chromatin Proteins During Differentiation. Methods in Molecular Biology, 2013, 1042, 173-180.	0.4	4

ERAN MESHORER

#	Article	IF	CITATIONS
91	Embryonic Stem Cell Differentiation Is Regulated by SET through Interactions with p53 and β-Catenin. Stem Cell Reports, 2020, 15, 1260-1274.	2.3	4
92	CloneSeq: A highly sensitive analysis platform for the characterization of 3D-cultured single-cell-derived clones. Developmental Cell, 2021, 56, 1804-1817.e7.	3.1	4
93	Genes related to differentiation are correlated with the gene regulatory network structure. Bioinformatics, 2014, 30, 406-413.	1.8	3
94	The Princess and the P: Pluripotent Stem Cells and P-Bodies. Cell Stem Cell, 2019, 25, 589-591.	5.2	3
95	Chromatin and Nuclear Architecture in Stem Cells. Stem Cell Reports, 2020, 15, 1155-1157.	2.3	2
96	Can't smell the virus: SARS-CoV-2, chromatin organization, and anosmia. Developmental Cell, 2022, 57, 1081-1082.	3.1	2
97	Chronic cholinergic imbalances promote brain diffusion and transport abnormalities. FASEB Journal, 2006, 20, 2425-2425.	0.2	1
98	Hyperdynamic Plasticity of Chromatin Proteins in Pluripotent Embryonic Stem Cells. Developmental Cell, 2012, 22, 233-234.	3.1	1
99	SyStem cell biology. Systems Biomedicine (Austin, Tex), 2013, 1, 2-4.	0.7	1
100	Nuclear lamins: key regulators of nuclear structure and activities. Journal of Cellular and Molecular Medicine, 2009, 13, 1059-1085.	1.6	1
101	Iran is sixth, not second, in Middle East publication list. Nature, 2006, 443, 271-271.	13.7	0
102	Eran Meshorer: getting a chromatin perspective. Journal of Cell Biology, 2008, 182, 618-619.	2.3	0
103	Nuclear visions enhanced: chromatin structure, organization and dynamics. EMBO Reports, 2011, 12, 748-750.	2.0	0
104	Epigenetics in Development, Differentiation and Reprogramming. , 2016, , 421-448.		0
105	Forward and Reverse Epigenomics in Embryonic Stem Cells. , 2019, , 2269-2288.		Ο
106	Gone with the Wnt/Notch: stem cells in laminopathies, progeria, and aging. Journal of Experimental Medicine, 2008, 205, i11-i11.	4.2	0
107	Forward and Reverse Epigenomics in Embryonic Stem Cells. , 2017, , 1-20.		0
108	Chromatin plasticity in pluripotent and cancer stem cells. , 2020, , 207-230.		0