
Paul Anastas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9468539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applying green chemistry to raw material selection and product formulation at The Estée Lauder Companies. Green Chemistry, 2022, 24, 2397-2408.	4.6	5
2	Self-assembly of supramolecular complexes of charged conjugated polymers and imidazolium-based ionic liquid crystals. Giant, 2022, 9, 100088.	2.5	5
3	Building Pathways to a Sustainable Planet. ACS Sustainable Chemistry and Engineering, 2022, 10, 1-2.	3.2	1
4	Synthetic Cooling Agents in US-marketed E-cigarette Refill Liquids and Popular Disposable E-cigarettes: Chemical Analysis and Risk Assessment. Nicotine and Tobacco Research, 2022, 24, 1037-1046.	1.4	31
5	What to Expect When Expecting in Lab: A Review of Unique Risks and Resources for Pregnant Researchers in the Chemical Laboratory. Chemical Research in Toxicology, 2022, 35, 163-198.	1.7	5
6	One-pot synthesis to prepare lignin/photoacid nanohybrids for multifunctional biosensors and photo-triggered singlet oxygen generation. Green Chemistry, 2022, 24, 2904-2918.	4.6	6
7	Differences in flavourant levels and synthetic coolant use between USA, EU and Canadian Juul products. Tobacco Control, 2021, 30, 453-455.	1.8	34
8	Quantification of Flavorants and Nicotine in Waterpipe Tobacco and Mainstream Smoke and Comparison to E-cigarette Aerosol. Nicotine and Tobacco Research, 2021, 23, 600-604.	1.4	8
9	Electrochemical upgrading of depolymerized lignin: a review of model compound studies. Green Chemistry, 2021, 23, 2868-2899.	4.6	65
10	Electrocatalysis for Chemical and Fuel Production: Investigating Climate Change Mitigation Potential and Economic Feasibility. Environmental Science & amp; Technology, 2021, 55, 3240-3249.	4.6	30
11	Moving from Protection to Prosperity: Evolving the U.S. Environmental Protection Agency for the next 50 years. Environmental Science & amp; Technology, 2021, 55, 2779-2789.	4.6	7
12	A review of immobilization techniques to improve the stability and bioactivity of lysozyme. Green Chemistry Letters and Reviews, 2021, 14, 302-338.	2.1	27
13	The Law of the Land: Sustainable Chemistry Innovation. ACS Sustainable Chemistry and Engineering, 2021, 9, 5250-5251.	3.2	0
14	The Power of the United Nations Sustainable Development Goals in Sustainable Chemistry and Engineering Research. ACS Sustainable Chemistry and Engineering, 2021, 9, 8015-8017.	3.2	20
15	Plastics Are Not Bad. Bad Plastics Are Bad ACS Sustainable Chemistry and Engineering, 2021, 9, 9150-9150.	3.2	3
16	Yale School of Public Health Symposium: An overview of the challenges and opportunities associated with per- and polyfluoroalkyl substances (PFAS). Science of the Total Environment, 2021, 778, 146192.	3.9	22
17	Design for degradation or recycling for reuse?. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100528.	3.2	7
18	2020 Hindsight: Lessons from the Past Year. ACS Sustainable Chemistry and Engineering, 2021, 9, 1423-1424.	3.2	1

#	Article	IF	CITATIONS
19	Creating cascading non-linear solutions for the UN sustainable development goals through green chemistry. CheM, 2021, 7, 2825-2828.	5.8	3
20	Green Chemistry: Thirty Years of Holding Up Our End of the Bargain. ACS Sustainable Chemistry and Engineering, 2021, 9, 16005-16006.	3.2	0
21	CRISPR-Generated Nrf2a Loss- and Gain-of-Function Mutants Facilitate Mechanistic Analysis of Chemical Oxidative Stress-Mediated Toxicity in Zebrafish. Chemical Research in Toxicology, 2020, 33, 426-435.	1.7	8
22	The Evolution of ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 1-1.	3.2	6
23	Toward Less Hazardous Industrial Compounds: Coupling Quantum Mechanical Computations, Biomarker Responses, and Behavioral Profiles To Identify Bioactivity of SN2 Electrophiles in Alternative Vertebrate Models. Chemical Research in Toxicology, 2020, 33, 367-380.	1.7	8
24	Highly Efficient Ammonia Borane Hydrolytic Dehydrogenation in Neat Water Using Phase-Labeled CAAC-Ru Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 16097-16103.	3.2	12
25	Circularity. What's the Problem?. ACS Sustainable Chemistry and Engineering, 2020, 8, 13111-13111.	3.2	15
26	The Green Print: Advancement of Environmental Sustainability in Healthcare. Resources, Conservation and Recycling, 2020, 161, 104882.	5.3	121
27	Reduction in air pollution and attributable mortality due to COVID-19 lockdown — Authors' reply. Lancet Planetary Health, The, 2020, 4, e269.	5.1	4
28	Sustainable oxidative cleavage of catechols for the synthesis of muconic acid and muconolactones including lignin upgrading. Green Chemistry, 2020, 22, 6204-6211.	4.6	21
29	Beyond the beaker: benign by design society. Current Research in Green and Sustainable Chemistry, 2020, 3, 100028.	2.9	19
30	Constant Renewal: An Open Call for <i>ACS Sustainable Chemistry & Engineering</i> Editorial Advisory Board and Early Career Board Members. ACS Sustainable Chemistry and Engineering, 2020, 8, 12731-12732.	3.2	1
31	Worthy and Necessary Challenges. ACS Sustainable Chemistry and Engineering, 2020, 8, 6572-6573.	3.2	1
32	Air pollution reduction and mortality benefit during the COVID-19 outbreak in China. Lancet Planetary Health, The, 2020, 4, e210-e212.	5.1	312
33	Application of the hard and soft, acids and bases (HSAB) theory as a method to predict cumulative neurotoxicity. NeuroToxicology, 2020, 79, 95-103.	1.4	22
34	Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for Renewable Chemicals and Fuels Production. ChemSusChem, 2020, 13, 4214-4237.	3.6	123
35	Towards Sustainable Catalysis – Highly Efficient Olefin Metathesis in Protic Media Using Phase Labelled Cyclic Alkyl Amino Carbene (CAAC) Ruthenium Catalysts. ChemCatChem, 2020, 12, 1953-1957.	1.8	30
36	Designing for a green chemistry future. Science, 2020, 367, 397-400.	6.0	645

#	Article	IF	CITATIONS
37	1,4-Dioxane as an emerging water contaminant: State of the science and evaluation of research needs. Science of the Total Environment, 2019, 690, 853-866.	3.9	85
38	Flavorant–Solvent Reaction Products and Menthol in JUUL E-Cigarettes and Aerosol. American Journal of Preventive Medicine, 2019, 57, 425-427.	1.6	39
39	The periodic table of the elements of green and sustainable chemistry. Green Chemistry, 2019, 21, 6545-6566.	4.6	90
40	Soft Templating and Disorder in an Applied 1D Cobalt Coordination Polymer Electrocatalyst. Matter, 2019, 1, 1354-1369.	5.0	7
41	Cradle-to-Gate Greenhouse Gas Emissions for Twenty Anesthetic Active Pharmaceutical Ingredients Based on Process Scale-Up and Process Design Calculations. ACS Sustainable Chemistry and Engineering, 2019, 7, 6580-6591.	3.2	86
42	Heterogeneous copper-catalyzed direct reduction of C-glycosidic enones to saturated alcohols in water. Green Chemistry, 2019, 21, 238-244.	4.6	0
43	Introducing Toxicology into the Undergraduate Chemistry Laboratory Using Safety Data Sheets and Sunscreen Activities. Journal of Chemical Education, 2019, 96, 720-724.	1.1	7
44	Beyond Reductionist Thinking in Chemistry for Sustainability. Trends in Chemistry, 2019, 1, 145-148.	4.4	22
45	Teaching Atom Economy and E-Factor Concepts through a Green Laboratory Experiment: Aerobic Oxidative Cleavage of meso-Hydrobenzoin to Benzaldehyde Using a Heterogeneous Catalyst. Journal of Chemical Education, 2019, 96, 761-765.	1.1	31
46	Kinetics of Glutathione Depletion and Antioxidant Gene Expression as Indicators of Chemical Modes of Action Assessed <i>in Vitro</i> in Mouse Hepatocytes with Enhanced Glutathione Synthesis. Chemical Research in Toxicology, 2019, 32, 421-436.	1.7	8
47	Formation of flavorant–propylene Glycol Adducts With Novel Toxicological Properties in Chemically Unstable E-Cigarette Liquids. Nicotine and Tobacco Research, 2019, 21, 1248-1258.	1.4	139
48	Synthesis of Semiochemicals via Olefin Metathesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 33-48.	3.2	29
49	The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 20, 1929-1961.	4.6	499
50	Channel Interactions and Robust Inference for Ratiometric β-Lactamase Assay Data: A Tox21 Library Analysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 3233-3241.	3.2	1
51	Greener Methodology: An Aldol Condensation of an Unprotected C-Glycoside with Solid Base Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 7810-7817.	3.2	7
52	The United Nations sustainability goals: How can sustainable chemistry contribute?. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 150-153.	3.2	87
53	Inspiring process innovation <i>via</i> an improved green manufacturing metric: iGAL. Green Chemistry, 2018, 20, 2206-2211.	4.6	69
54	The safer chemical design game. Gamification of green chemistry and safer chemical design concepts for high school and undergraduate students. Green Chemistry Letters and Reviews, 2018, 11, 103-110.	2.1	32

#	Article	IF	CITATIONS
55	The Molecular Design Research Network. Toxicological Sciences, 2018, 161, 241-248.	1.4	17
56	Origins and Early History of Green Chemistry. Series on Chemistry, Energy and the Environment, 2018, , 1-17.	0.3	11
57	Presence of High-Intensity Sweeteners in Popular Cigarillos of Varying Flavor Profiles. JAMA - Journal of the American Medical Association, 2018, 320, 1380.	3.8	13
58	Comparative behavioral toxicology with two common larval fish models: Exploring relationships among modes of action and locomotor responses. Science of the Total Environment, 2018, 640-641, 1587-1600.	3.9	49
59	The Value-Adding Connections Between the Management of Ecoinnovation and the Principles of Green Chemistry and Green Engineering. , 2018, , 981-998.		8
60	Exploration of a Novel, Enamine-Solid-Base Catalyzed Aldol Condensation with C-Glycosidic Pyranoses and Furanoses. ACS Sustainable Chemistry and Engineering, 2018, 6, 11196-11199.	3.2	5
61	Structure impact of two galactomannan fractions on their viscosity properties in dilute solution, unperturbed state and gel state. International Journal of Biological Macromolecules, 2017, 96, 550-559.	3.6	23
62	Scientists Duty to the Truth. Environmental Science & amp; Technology, 2017, 51, 1058-1058.	4.6	2
63	Impact of lignin structure on oil production via hydroprocessing with a copper-doped porous metal oxide catalyst. Bioresource Technology, 2017, 233, 216-226.	4.8	29
64	EcoMnOx, a Biosourced Catalyst for Selective Aerobic Oxidative Cleavage of Activated 1,2-Diols. ACS Sustainable Chemistry and Engineering, 2017, 5, 3214-3222.	3.2	41
65	Metathesis of renewable polyene feedstocks – Indirect evidences of the formation of catalytically active ruthenium allylidene species. Journal of Organometallic Chemistry, 2017, 847, 213-217.	0.8	6
66	Heterogeneous Sodiumâ€Manganese Oxide Catalyzed Aerobic Oxidative Cleavage of 1,2â€Diols. Angewandte Chemie, 2017, 129, 9689-9693.	1.6	11
67	Heterogeneous Sodiumâ€Manganese Oxide Catalyzed Aerobic Oxidative Cleavage of 1,2â€Điols. Angewandte Chemie - International Edition, 2017, 56, 9561-9565.	7.2	54
68	A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst. Green Chemistry, 2017, 19, 1958-1968.	4.6	85
69	Quantum Chemistry Analysis of Reaction Thermodynamics for Hydrogenation and Hydrogenolysis of Aromatic Biomass Model Compounds. ACS Sustainable Chemistry and Engineering, 2017, 5, 10371-10378.	3.2	10
70	Synthesis of 1,6-Hexandiol, Polyurethane Monomer Derivatives via Isomerization Metathesis of Methyl Linolenate. ACS Sustainable Chemistry and Engineering, 2017, 5, 11215-11220.	3.2	15
71	Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chemistry, 2017, 19, 4200-4233.	4.6	542
72	Toward the Design of Less Hazardous Chemicals: Exploring Comparative Oxidative Stress in Two Common Animal Models. Chemical Research in Toxicology, 2017, 30, 893-904.	1.7	26

#	Article	IF	CITATIONS
73	The effect of sucralose on flavor sweetness in electronic cigarettes varies between delivery devices. PLoS ONE, 2017, 12, e0185334.	1.1	20
74	The Molecular Basis of Sustainability. CheM, 2016, 1, 10-12.	5.8	39
75	Coupled molecular design diagrams to guide safer chemical design with reduced likelihood of perturbing the NRF2-ARE antioxidant pathway and inducing cytotoxicity. Green Chemistry, 2016, 18, 6387-6394.	4.6	7
76	Safer by Design. Green Chemistry, 2016, 18, 4324-4324.	4.6	11
77	Probabilistic diagram for designing chemicals with reduced potency to incur cytotoxicity. Green Chemistry, 2016, 18, 4461-4467.	4.6	11
78	A Strategy for Material Supply Chain Sustainability: Enabling a Circular Economy in the Electronics Industry through Green Engineering. ACS Sustainable Chemistry and Engineering, 2016, 4, 5879-5888.	3.2	65
79	Twenty-Five Years of Green Chemistry and Green Engineering: The End of the Beginning. ACS Sustainable Chemistry and Engineering, 2016, 4, 5820-5820.	3.2	30
80	Current Status and Future Challenges in Molecular Design for Reduced Hazard. ACS Sustainable Chemistry and Engineering, 2016, 4, 5900-5906.	3.2	35
81	Assessment of predictive models for estimating the acute aquatic toxicity of organic chemicals. Green Chemistry, 2016, 18, 4432-4445.	4.6	99
82	Advancing Sustainable Manufacturing through a Heterogeneous Cobalt Catalyst for Selective C–H Oxidation. Industrial & Engineering Chemistry Research, 2016, 55, 3308-3312.	1.8	6
83	"Happy silver anniversary― Green Chemistry at 25. Green Chemistry, 2016, 18, 12-13.	4.6	35
84	Highly selective hydrogenation and hydrogenolysis using a copper-doped porous metal oxide catalyst. Green Chemistry, 2016, 18, 150-156.	4.6	49
85	Identifying and designing chemicals with minimal acute aquatic toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6289-6294.	3.3	75
86	Toward designing safer chemicals. Science, 2015, 347, 215-215.	6.0	17
87	Toward safer multi-walled carbon nanotube design: Establishing a statistical model that relates surface charge and embryonic zebrafish mortality. Nanotoxicology, 2015, 10, 1-10.	1.6	25
88	Life cycle inventory improvement in the pharmaceutical sector: assessment of the sustainability combining PMI and LCA tools. Green Chemistry, 2015, 17, 3390-3400.	4.6	90
89	Toward substitution with no regrets. Science, 2015, 347, 1198-1199.	6.0	107
90	Performance Enhancement for Electrolytic Systems through the Application of a Cobalt-based Heterogeneous Water Oxidation Catalyst. ACS Sustainable Chemistry and Engineering, 2015, 3, 1234-1240.	3.2	21

#	Article	IF	CITATIONS
91	Designing nanomaterials to maximize performance and minimize undesirable implications guided by the Principles of Green Chemistry. Chemical Society Reviews, 2015, 44, 5758-5777.	18.7	183
92	Reducing aquatic hazards of industrial chemicals: Probabilistic assessment of sustainable molecular design guidelines. Environmental Toxicology and Chemistry, 2014, 33, 1894-1902.	2.2	21
93	Green Chemistry as a Leadership Opportunity for Toxicology: We Must Take the Wheel. Toxicological Sciences, 2014, 141, 4-5.	1.4	12
94	Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides. Green Chemistry, 2014, 16, 191-196.	4.6	250
95	A heterogeneous water oxidation catalyst from dicobalt octacarbonyl and 1,2-bis(diphenylphosphino)ethane. New Journal of Chemistry, 2014, 38, 1540.	1.4	13
96	Enzymatic and acid hydrolysis of Tetraselmis suecica for polysaccharide characterization. Bioresource Technology, 2014, 173, 415-421.	4.8	42
97	Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol. Bioresource Technology, 2014, 161, 78-83.	4.8	86
98	Differing selectivities in mechanochemical versus conventional solution oxidation using Oxone. Tetrahedron Letters, 2013, 54, 2344-2347.	0.7	20
99	Urinary Cadmium in the 1999–2008 U.S. National Health and Nutrition Examination Survey (NHANES). Environmental Science & Technology, 2013, 47, 1137-1147.	4.6	82
100	Plastics additives and green chemistry. Pure and Applied Chemistry, 2013, 85, 1611-1624.	0.9	42
101	Properties of Thermosets Derived from Chemically Modified Triglycerides and Bio-Based Comonomers. Applied Sciences (Switzerland), 2013, 3, 684-693.	1.3	15
102	Advancing the Next Generation of Health Risk Assessment. Environmental Health Perspectives, 2012, 120, 1499-1502.	2.8	36
103	Science in support of the <i>Deepwater Horizon</i> response. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20212-20221.	3.3	124
104	A Free Energy Approach to the Prediction of Olefin and Epoxide Mutagenicity and Carcinogenicity. Chemical Research in Toxicology, 2012, 25, 2780-2787.	1.7	18
105	Barriers to the Implementation of Green Chemistry in the United States. Environmental Science & Technology, 2012, 46, 10892-10899.	4.6	56
106	One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol. Green Chemistry, 2012, 14, 2457.	4.6	164
107	Fundamental Changes to EPA's Research Enterprise: The Path Forward. Environmental Science & Technology, 2012, 46, 580-586.	4.6	19
108	Towards rational molecular design for reduced chronic aquatic toxicity. Green Chemistry, 2012, 14, 1001.	4.6	52

#	Article	IF	CITATIONS
109	Green Chemistry: present and future. Chemical Society Reviews, 2012, 41, 1413.	18.7	115
110	Modification of chitosan films with environmentally benign reagents for increased water resistance. Green Chemistry Letters and Reviews, 2011, 4, 35-40.	2.1	46
111	Green Chemistry and Green Engineering: A Framework for Sustainable Technology Development. Annual Review of Environment and Resources, 2011, 36, 271-293.	5.6	166
112	Linear and cyclic C-glycosides as surfactants. Green Chemistry, 2011, 13, 321-325.	4.6	38
113	A conceptual framework for description of complexity in intensive chemical processes. Chemical Engineering and Processing: Process Intensification, 2011, 50, 1027-1034.	1.8	14
114	Towards rational molecular design: derivation of property guidelines for reduced acute aquatic toxicity. Green Chemistry, 2011, 13, 2373.	4.6	66
115	Green chemistry in China. Pure and Applied Chemistry, 2011, 83, 1379-1390.	0.9	18
116	Green Chemistry: Principles and Practice. Chemical Society Reviews, 2010, 39, 301-312.	18.7	3,379
117	Toward molecular design for hazard reduction—fundamental relationships between chemical properties and toxicity. Tetrahedron, 2010, 66, 1031-1039.	1.0	28
118	Perspective on Green Chemistry: The most challenging synthetic transformation. Tetrahedron, 2010, 66, 1026-1027.	1.0	11
119	Ensuring the safety of chemicals. Journal of Exposure Science and Environmental Epidemiology, 2010, 20, 395-396.	1.8	19
120	2020 visions. Nature, 2010, 463, 26-32.	13.7	75
121	Toward a Comprehensive Molecular Design Framework for Reduced Hazard. Chemical Reviews, 2010, 110, 5845-5882.	23.0	98
122	Designing Science in a Crisis: The Deepwater Horizon Oil Spill. Environmental Science & Technology, 2010, 44, 9250-9251.	4.6	19
123	The Essential Bill Glaze. Environmental Science & Technology, 2010, 44, 7181-7183.	4.6	0
124	Silver-Catalyzed One-Pot Synthesis of Arylnaphthalene Lactone Natural Products. Journal of Natural Products, 2010, 73, 811-813.	1.5	31
125	Smectic Demixing in the Phase Behavior and Self-Assembly of a Hydrogen-Bonded Polymer with Mesogenic Side Chains. Macromolecules, 2010, 43, 6646-6654.	2.2	31
126	Advances in the methodology of a multicomponent synthesis of arylnaphthalene lactones. Green Chemistry, 2010, 12, 888.	4.6	15

#	Article	IF	CITATIONS
127	Integrating Green Engineering into Engineering Curricula. ACS Symposium Series, 2009, , 137-146.	0.5	1
128	The Transformative Innovations Needed by Green Chemistry for Sustainability. ChemSusChem, 2009, 2, 391-392.	3.6	53
129	Green Chemistry: A design framework for sustainability. Energy and Environmental Science, 2009, 2, 1038.	15.6	185
130	Changing the Course of Chemistry. ACS Symposium Series, 2009, , 1-18.	0.5	13
131	Frontiers in Green Chemistry: meeting the grand challenges for sustainability in R&D and manufacturing. Journal of Cleaner Production, 2008, 16, 743-750.	4.6	148
132	Toward Green Nano. Journal of Industrial Ecology, 2008, 12, 316-328.	2.8	145
133	Fusing green chemistry and green engineering: DesignBuild at the molecular level. Green Chemistry, 2008, 10, 607.	4.6	10
134	Spatial Assessment of Net Mercury Emissions from the Use of Fluorescent Bulbs. Environmental Science & Technology, 2008, 42, 8564-8570.	4.6	38
135	Silver-Catalyzed One-Pot Synthesis of Arylnaphthalene Lactones. Journal of Organic Chemistry, 2008, 73, 6932-6935.	1.7	78
136	Green chemistry design, innovation, solutions and a cohesive system. Green Chemistry Letters and Reviews, 2007, 1, 3-4.	2.1	7
137	Introduction:  Green Chemistry. Chemical Reviews, 2007, 107, 2167-2168.	23.0	233
138	Innovations and Green Chemistry. Chemical Reviews, 2007, 107, 2169-2173.	23.0	616
139	Green chemistry: the emergence of a transformative framework. Green Chemistry Letters and Reviews, 2007, 1, 9-24.	2.1	92
140	Design Through the 12 Principles of Green Engineering. IEEE Engineering Management Review, 2007, 35, 16-16.	1.0	45
141	Ten years of green chemistry at the Gordon Research Conferences: frontiers of science. Green Chemistry, 2006, 8, 677.	4.6	6
142	Peer Reviewed: Design Through the 12 Principles of Green Engineering. Environmental Science & Technology, 2003, 37, 94A-101A.	4.6	992
143	Green engineering and sustainability. Environmental Science & Technology, 2003, 37, 423A-423A.	4.6	12
144	Peer Reviewed: Applying the Principles of Green Engineering to Cradle-to-Cradle Design. Environmental Science & Technology, 2003, 37, 434A-441A.	4.6	224

#	Article	IF	CITATIONS
145	GSC Tokyo Statement. Green Chemistry, 2003, 5, G74.	4.6	1
146	Title is missing!. Green Chemistry, 2003, 5, G29.	4.6	59
147	Radiation Chemistry: The Basis for an Inherently Green Process Technology. ACS Symposium Series, 2002, , 163-176.	0.5	0
148	Toward a Green Chemistry and Engineering Solution for the U.S. Energy Industry: Reducing Emissions and Converting Waste Streams into Value-Added Products. ACS Symposium Series, 2002, , 225-241.	0.5	2
149	Life-Cycle Approaches for Assessing Green Chemistry Technologies. Industrial & Engineering Chemistry Research, 2002, 41, 4498-4502.	1.8	69
150	Sustainability through Green Chemistry and Engineering. ACS Symposium Series, 2002, , 1-11.	0.5	22
151	Spinosad: A Green Natural Product for Insect Control. ACS Symposium Series, 2002, , 61-73.	0.5	19
152	Sustainable Development through Industrial Ecology. ACS Symposium Series, 2002, , 13-29.	0.5	4
153	An Environmentally Benign Catalytic Polyoxometalate Technology for Transforming Wood Pulp into Paper. ACS Symposium Series, 2002, , 87-100.	0.5	3
154	Green Chemistry as Applied to Solvents. ACS Symposium Series, 2002, , 1-9.	0.5	21
155	Green Chemistry: Science and Politics of Change. Science, 2002, 297, 807-810.	6.0	761
156	Origins, Current Status, and Future Challenges of Green Chemistry. Accounts of Chemical Research, 2002, 35, 686-694.	7.6	1,892
157	Peer Reviewed: Green Chemistry Progress & Challenges. Environmental Science & Technology, 2001, 35, 114A-119A.	4.6	11
158	The challenge that must be met. Clean Products and Processes, 2001, 3, 284-285.	0.4	0
159	Catalysis as a foundational pillar of green chemistry. Applied Catalysis A: General, 2001, 221, 3-13.	2.2	414
160	A principled stance. Nature, 2001, 413, 257-257.	13.7	125
161	The role of catalysis in the design, development, and implementation of green chemistry. Catalysis Today, 2000, 55, 11-22.	2.2	323
162	Synthetic pathways and processes in green chemistry. Introductory overview. Pure and Applied Chemistry, 2000, 72, 1207-1228.	0.9	430

#	Article	IF	CITATIONS
163	Green Chemical Syntheses and Processes: Introduction. ACS Symposium Series, 2000, , 1-6.	0.5	26
164	Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chemistry, 2000, 2, 289-295.	4.6	193
165	Green chemistry education. Environmental Science and Pollution Research, 1999, 6, 106-106.	2.7	1
166	Green Chemistry and the Role of Analytical Methodology Development. Critical Reviews in Analytical Chemistry, 1999, 29, 167-175.	1.8	436
167	More 1999 Presidential Green Chemistry Awards. Green Chemistry, 1999, 1, G174-G175.	4.6	0
168	More 1999 Presidential Green Chemistry Awards. Green Chemistry, 1999, 1, G124-G125.	4.6	2
169	Joe Breen-heart and soul of Green Chemistry. Green Chemistry, 1999, 1, G87-G87.	4.6	3
170	Peer Reviewed: Promoting Green Chemistry Initiatives. Environmental Science & Technology, 1999, 33, 116A-119A.	4.6	34
171	THE UNITED STATES GREEN CHEMISTRY PROGRAM. Critical Reviews in Analytical Chemistry, 1999, 29, 267-268.	1.8	4
172	Design for the environment and Green Chemistry: The heart and soul of industrial ecology. Journal of Cleaner Production, 1997, 5, 97-102.	4.6	66
173	Green Chemistry: An Overview. ACS Symposium Series, 1996, , 1-17.	0.5	70
174	Methodology for pollution source reduction assessments of the manufacturing process chemistry in the US EPA's pre-manufacture notice reviews. Journal of Cleaner Production, 1994, 2, 37-41.	4.6	0
175	Benign by Design Chemistry. ACS Symposium Series, 1994, , 2-22.	0.5	24
176	Synthesis of Natural Lignan Arylnaphthalene Lactones, Daurinol and Retrochinensin. Journal of Natural Products, 1991, 54, 1687-1691.	1.5	20
177	The Wittig reaction in the undergraduate organic laboratory. Journal of Chemical Education, 1985, 62, 346.	1.1	10
178	4,5-diphenyl-1-methylimidazole: An undergraduate laboratory experiment. Journal of Chemical Education, 1985, 62, 515.	1.1	2