
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9467814/publications.pdf Version: 2024-02-01

FHUD Y ISACOFF

#	Article	IF	CITATIONS
1	A Selective Turn-On Fluorescent Sensor for Imaging Copper in Living Cells. Journal of the American Chemical Society, 2006, 128, 10-11.	6.6	748
2	Light-activated ion channels for remote control of neuronal firing. Nature Neuroscience, 2004, 7, 1381-1386.	7.1	660
3	Subunit counting in membrane-bound proteins. Nature Methods, 2007, 4, 319-321.	9.0	632
4	A Selective, Cell-Permeable Optical Probe for Hydrogen Peroxide in Living Cells. Journal of the American Chemical Society, 2004, 126, 15392-15393.	6.6	594
5	Allosteric control of an ionotropic glutamate receptor with an optical switch. Nature Chemical Biology, 2006, 2, 47-52.	3.9	558
6	Neurexin mediates the assembly of presynaptic terminals. Nature Neuroscience, 2003, 6, 708-716.	7.1	553
7	Functional Architecture of Olfactory Ionotropic Glutamate Receptors. Neuron, 2011, 69, 44-60.	3.8	545
8	Boronate-Based Fluorescent Probes for Imaging Cellular Hydrogen Peroxide. Journal of the American Chemical Society, 2005, 127, 16652-16659.	6.6	537
9	Transmembrane Movement of the Shaker K+ Channel S4. Neuron, 1996, 16, 387-397.	3.8	513
10	Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature, 1990, 345, 530-534.	13.7	452
11	A Genetically Encoded Optical Probe of Membrane Voltage. Neuron, 1997, 19, 735-741.	3.8	407
12	Molecular imaging of hydrogen peroxide produced for cell signaling. Nature Chemical Biology, 2007, 3, 263-267.	3.9	406
13	Scanless two-photon excitation of channelrhodopsin-2. Nature Methods, 2010, 7, 848-854.	9.0	400
14	Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature, 2009, 461, 407-410.	13.7	387
15	Optical quantal analysis of synaptic transmission in wild-type and rab3-mutant Drosophila motor axons. Nature Neuroscience, 2011, 14, 519-526.	7.1	368
16	Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature, 2006, 440, 697-701.	13.7	339
17	Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel. Nature, 1991, 353, 86-90.	13.7	336
18	Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor. Neuron, 2007, 54, 535-545.	3.8	310

#	Article	IF	CITATIONS
19	Optical Switches for Remote and Noninvasive Control of Cell Signaling. Science, 2008, 322, 395-399.	6.0	296
20	How Does Voltage Open an Ion Channel?. Annual Review of Cell and Developmental Biology, 2006, 22, 23-52.	4.0	286
21	Closing In on the Resting State of the Shaker K+ Channel. Neuron, 2007, 56, 124-140.	3.8	270
22	Voltage-Sensing Arginines in a Potassium Channel Permeate and Occlude Cation-Selective Pores. Neuron, 2005, 45, 379-388.	3.8	248
23	The Voltage-Gated Proton Channel Hv1 Has Two Pores, Each Controlled by One Voltage Sensor. Neuron, 2008, 58, 546-556.	3.8	226
24	Functional Identification of a Goldfish Odorant Receptor. Neuron, 1999, 23, 487-498.	3.8	224
25	Filtering of Visual Information in the Tectum by an Identified Neural Circuit. Science, 2010, 330, 669-673.	6.0	223
26	Watching a Synapse Grow. Neuron, 1999, 22, 719-729.	3.8	213
27	Optical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17789-17794.	3.3	200
28	Synaptic Clustering of Fasciclin II and Shaker: Essential Targeting Sequences and Role of Dlg. Neuron, 1997, 19, 1007-1016.	3.8	195
29	Optical control of metabotropic glutamate receptors. Nature Neuroscience, 2013, 16, 507-516.	7.1	192
30	A Red-Shifted, Fast-Relaxing Azobenzene Photoswitch for Visible Light Control of an Ionotropic Glutamate Receptor. Journal of the American Chemical Society, 2013, 135, 17683-17686.	6.6	189
31	In Vivo Performance of Genetically Encoded Indicators of Neural Activity in Flies. Journal of Neuroscience, 2005, 25, 4766-4778.	1.7	187
32	Stoichiometry of the KCNQ1Â-ÂKCNE1 ion channel complex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18862-18867.	3.3	174
33	Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10865-10870.	3.3	169
34	LiGluR Restores Visual Responses in Rodent Models of Inherited Blindness. Molecular Therapy, 2011, 19, 1212-1219.	3.7	168
35	Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11558-11563.	3.3	163
36	Emergence of Patterned Activity in the Developing Zebrafish Spinal Cord. Current Biology, 2012, 22, 93-102.	1.8	163

#	Article	IF	CITATIONS
37	Reversibly Caged Glutamate:Â A Photochromic Agonist of Ionotropic Glutamate Receptors. Journal of the American Chemical Society, 2007, 129, 260-261.	6.6	154
38	Rules of engagement for NMDA receptor subunits. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14163-14168.	3.3	145
39	Conformational dynamics of a class C G-protein-coupled receptor. Nature, 2015, 524, 497-501.	13.7	144
40	Molecular basis for multimerization in the activation of the epidermal growth factor receptor. ELife, 2016, 5, .	2.8	144
41	Evoked and Spontaneous Transmission Favored by Distinct Sets of Synapses. Current Biology, 2014, 24, 484-493.	1.8	135
42	Subunit organization and functional transitions in Ci-VSP. Nature Structural and Molecular Biology, 2008, 15, 106-108.	3.6	134
43	Mechanism of Assembly and Cooperativity of Homomeric and Heteromeric Metabotropic Glutamate Receptors. Neuron, 2016, 92, 143-159.	3.8	133
44	The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature, 2007, 445, 546-549.	13.7	130
45	The opening of the two pores of the Hv1 voltage-gated proton channel is tuned by cooperativity. Nature Structural and Molecular Biology, 2010, 17, 44-50.	3.6	125
46	A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nature Neuroscience, 2010, 13, 1027-1032.	7.1	124
47	Restoring Vision to the Blind with Chemical Photoswitches. Chemical Reviews, 2018, 118, 10748-10773.	23.0	120
48	The Orientation and Molecular Movement of a K+ Channel Voltage-Sensing Domain. Neuron, 2003, 40, 515-525.	3.8	119
49	The Cooperative Voltage Sensor Motion that Gates a Potassium Channel. Journal of General Physiology, 2005, 125, 57-69.	0.9	118
50	Input-Specific Plasticity and Homeostasis at the Drosophila Larval Neuromuscular Junction. Neuron, 2017, 93, 1388-1404.e10.	3.8	118
51	Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity. Molecular Therapy, 2015, 23, 1562-1571.	3.7	117
52	Molecular Models of Voltage Sensing. Journal of General Physiology, 2002, 120, 455-463.	0.9	115
53	Structural rearrangements in single ion channels detected optically in living cells. Proceedings of the United States of America, 2002, 99, 12759-12764.	3.3	111
54	A fluorescent probe designed for studying protein conformational change. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 965-970.	3.3	110

#	Article	IF	CITATIONS
55	Optical Control of Neuronal Activity. Annual Review of Biophysics, 2010, 39, 329-348.	4.5	110
56	APP Homodimers Transduce an Amyloid-β-Mediated Increase in Release Probability at Excitatory Synapses. Cell Reports, 2014, 7, 1560-1576.	2.9	109
57	Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5574-83.	3.3	104
58	Orthogonal Optical Control of a G Protein-Coupled Receptor with a SNAP-Tethered Photochromic Ligand. ACS Central Science, 2015, 1, 383-393.	5.3	104
59	Tuning FlaSh: Redesign of the Dynamics, Voltage Range, and Color of the Genetically Encoded Optical Sensor of Membrane Potential. Biophysical Journal, 2002, 83, 3607-3618.	0.2	103
60	Molecular Coupling of S4 to a K+ Channel's Slow Inactivation Gate. Journal of General Physiology, 2000, 116, 623-636.	0.9	102
61	Reconstructing Voltage Sensor–Pore Interaction from a Fluorescence Scan of a Voltage-Gated K+ Channel. Neuron, 2000, 27, 585-595.	3.8	102
62	A phosphotyrosine switch regulates organic cation transporters. Nature Communications, 2016, 7, 10880.	5.8	100
63	Heterogeneity in synaptic transmission along a Drosophila larval motor axon. Nature Neuroscience, 2005, 8, 1188-1196.	7.1	98
64	Optical Control of Endogenous Proteins with a Photoswitchable Conditional Subunit Reveals a Role for TREK1 in GABAB Signaling. Neuron, 2012, 74, 1005-1014.	3.8	98
65	Colloid-guided assembly of oriented 3D neuronal networks. Nature Methods, 2008, 5, 735-740.	9.0	97
66	Restoration of high-sensitivity and adapting vision with a cone opsin. Nature Communications, 2019, 10, 1221.	5.8	96
67	Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E776-85.	3.3	93
68	Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system. Nature Chemical Biology, 2018, 14, 655-663.	3.9	93
69	Independence and Cooperativity in Rearrangements of a Potassium Channel Voltage Sensor Revealed by Single Subunit Fluorescence. Journal of General Physiology, 2000, 115, 257-268.	0.9	91
70	Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nature Methods, 2015, 12, 852-858.	9.0	85
71	Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6814-6819.	3.3	82
72	AMPA receptor/TARP stoichiometry visualized by single-molecule subunit counting. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5163-5168.	3.3	79

#	Article	IF	CITATIONS
73	Critical role for Orai1 C-terminal domain and TM4 in CRAC channel gating. Cell Research, 2015, 25, 963-980.	5.7	77
74	A family of photoswitchable NMDA receptors. ELife, 2016, 5, .	2.8	73
75	Dual optical control and mechanistic insights into photoswitchable group II and III metabotropic glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3546-E3554.	3.3	72
76	Protein Surface Recognition by Rational Design:Â Nanomolar Ligands for Potassium Channels. Journal of the American Chemical Society, 2003, 125, 12668-12669.	6.6	69
77	Electrochemical coupling in the voltage-dependent phosphatase Ci-VSP. Nature Chemical Biology, 2010, 6, 369-375.	3.9	69
78	Optogenetic activation of LiGluRâ€expressing astrocytes evokes anion channelâ€mediated glutamate release. Journal of Physiology, 2012, 590, 855-873.	1.3	69
79	Neuromodulatory Regulation of Behavioral Individuality in Zebrafish. Neuron, 2016, 91, 587-601.	3.8	69
80	Optical switches and triggers for the manipulation of ion channels and pores. Molecular BioSystems, 2007, 3, 686.	2.9	68
81	All Optical Interface for Parallel, Remote, and Spatiotemporal Control of Neuronal Activity. Nano Letters, 2007, 7, 3859-3863.	4.5	67
82	Multiple C-terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization. EMBO Journal, 2010, 29, 3924-3938.	3.5	66
83	Optical control of sphingosine-1-phosphate formation and function. Nature Chemical Biology, 2019, 15, 623-631.	3.9	66
84	Conformational Switch between Slow and Fast Gating Modes. Neuron, 2002, 35, 935-949.	3.8	65
85	Restoration of patterned vision with an engineered photoactivatable G protein-coupled receptor. Nature Communications, 2017, 8, 1862.	5.8	65
86	The Pore of the Voltage-Gated Proton Channel. Neuron, 2011, 72, 991-1000.	3.8	63
87	Optical Control of Dopamine Receptors Using a Photoswitchable Tethered Inverse Agonist. Journal of the American Chemical Society, 2017, 139, 18522-18535.	6.6	63
88	Tethered ligands reveal glutamate receptor desensitization depends on subunit occupancy. Nature Chemical Biology, 2014, 10, 273-280.	3.9	61
89	How Far Will You Go to Sense Voltage?. Neuron, 2005, 48, 719-725.	3.8	60
90	Optical probing of a dynamic membrane interaction that regulates the TREK1 channel. Proceedings of the United States of America, 2011, 108, 2605-2610.	3.3	59

#	Article	IF	CITATIONS
91	Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4194-4199.	3.3	59
92	<i>>Drosophila</i> Huntingtin-Interacting Protein 14 Is a Presynaptic Protein Required for Photoreceptor Synaptic Transmission and Expression of the Palmitoylated Proteins Synaptosome-Associated Protein 25 and Cysteine String Protein. Journal of Neuroscience, 2007, 27, 12874-12883.	1.7	57
93	Neuronal synapse interaction reconstituted between live cells and supported lipid bilayers. Nature Chemical Biology, 2005, 1, 283-289.	3.9	54
94	Calix[4]arene-based conical-shaped ligands for voltage-dependent potassium channels. Proceedings of the United States of America, 2009, 106, 10482-10486.	3.3	54
95	Structural model of the TRPP2/PKD1 C-terminal coiled-coil complex produced by a combined computational and experimental approach. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10133-10138.	3.3	51
96	Genetically Targeted Optical Control of an Endogenous G Protein-Coupled Receptor. Journal of the American Chemical Society, 2019, 141, 11522-11530.	6.6	51
97	Two-Photon Imaging of Calcium in Virally Transfected Striate Cortical Neurons of Behaving Monkey. PLoS ONE, 2010, 5, e13829.	1.1	50
98	Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. Current Opinion in Pharmacology, 2015, 20, 135-143.	1.7	49
99	Optical control of neuronal activity using a light-operated GIRK channel opener (LOGO). Chemical Science, 2016, 7, 2347-2352.	3.7	49
100	A specialized molecular motion opens the Hv1 voltage-gated proton channel. Nature Structural and Molecular Biology, 2015, 22, 283-290.	3.6	48
101	Phospholipase D2 specifically regulates TREK potassium channels via direct interaction and local production of phosphatidic acid. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13547-13552.	3.3	47
102	Molecular mechanism of the assembly of an acid-sensing receptor ion channel complex. Nature Communications, 2012, 3, 1252.	5.8	45
103	Conduits of Life's Spark: A Perspective on Ion Channel Research since the Birth of Neuron. Neuron, 2013, 80, 658-674.	3.8	44
104	A glutamate switch controls voltage-sensitive phosphatase function. Nature Structural and Molecular Biology, 2012, 19, 633-641.	3.6	43
105	Assembly Stoichiometry of the GluK2/GluK5 Kainate Receptor Complex. Cell Reports, 2012, 1, 234-240.	2.9	43
106	Conformational pathway provides unique sensitivity to a synaptic mGluR. Nature Communications, 2019, 10, 5572.	5.8	43
107	Cooperative Binding of Stromal Interaction Molecule 1 (STIM1) to the N and C Termini of Calcium Release-activated Calcium Modulator 1 (Orai1). Journal of Biological Chemistry, 2016, 291, 334-341.	1.6	42
108	Multiplexed temporally focused light shaping for high-resolution multi-cell targeting. Optica, 2018, 5, 1478.	4.8	42

#	Article	IF	CITATIONS
109	Synapses in the spotlight with syntheticÂoptogenetics. EMBO Reports, 2017, 18, 677-692.	2.0	41
110	A Toolkit for Orthogonal and in vivo Optical Manipulation of Ionotropic Glutamate Receptors. Frontiers in Molecular Neuroscience, 2016, 9, 2.	1.4	40
111	Allosteric substrate switching in a voltage-sensing lipid phosphatase. Nature Chemical Biology, 2016, 12, 261-267.	3.9	39
112	Fast widefield imaging of neuronal structure and function with optical sectioning in vivo. Science Advances, 2020, 6, eaaz3870.	4.7	39
113	Genetic Screen for Potassium Leaky Small Mechanosensitive Channels (MscS) in Escherichia coli. Journal of Biological Chemistry, 2011, 286, 877-888.	1.6	38
114	A Spinal Opsin Controls Early Neural Activity and Drives a Behavioral Light Response. Current Biology, 2015, 25, 69-74.	1.8	37
115	Optical Control of Lysophosphatidic Acid Signaling. Journal of the American Chemical Society, 2020, 142, 10612-10616.	6.6	37
116	Genetically encoded optical sensors of neuronal activity and cellular function. Current Opinion in Neurobiology, 2001, 11, 601-607.	2.0	36
117	Subunit composition of a DEG/ENaC mechanosensory channel of Caenorhabditis elegans. Proceedings of the United States of America, 2015, 112, 11690-11695.	3.3	36
118	Alternative Splicing of Neuroligin Regulates the Rate of Presynaptic Differentiation. Journal of Neuroscience, 2010, 30, 11435-11446.	1.7	34
119	Precise modulation of neuronal activity with synthetic photoswitchable ligands. Current Opinion in Neurobiology, 2017, 45, 202-209.	2.0	33
120	Pseudomonas aeruginosa Homoserine Lactone Activates Store-operated cAMP and Cystic Fibrosis Transmembrane Regulator-dependent Clâ^ Secretion by Human Airway Epithelia. Journal of Biological Chemistry, 2010, 285, 34850-34863.	1.6	31
121	Rapid feedback regulation of synaptic efficacy during high-frequency activity at the Drosophila larval neuromuscular junction. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9142-9147.	3.3	31
122	A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore. Journal of General Physiology, 2017, 149, 577-593.	0.9	30
123	Neuronal Activation by GPI-Linked Neuroligin-1 Displayed in Synthetic Lipid Bilayer Membranes. Langmuir, 2005, 21, 10693-10698.	1.6	29
124	The Brain Prize 2013: the optogenetics revolution. Trends in Neurosciences, 2013, 36, 557-560.	4.2	28
125	Sequential Steps of CRAC Channel Activation. Cell Reports, 2017, 19, 1929-1939.	2.9	28
126	Shedding light on membrane proteins. Trends in Neurosciences, 2005, 28, 472-479.	4.2	27

#	Article	IF	CITATIONS
127	Nanoengineering Ion Channels for Optical Control. Physiology, 2008, 23, 238-247.	1.6	27
128	<i>Caenorhabditis elegans</i> paraoxonase-like proteins control the functional expression of DEG/ENaC mechanosensory proteins. Molecular Biology of the Cell, 2016, 27, 1272-1285.	0.9	27
129	Selective Photoswitchable Allosteric Agonist of a G Protein-Coupled Receptor. Journal of the American Chemical Society, 2021, 143, 8951-8956.	6.6	25
130	Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture. ELife, 2020, 9,	2.8	24
131	Stoichiometry and specific assembly of Best ion channels. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6491-6496.	3.3	23
132	Determinants of synapse diversity revealed by super-resolution quantal transmission and active zone imaging. Nature Communications, 2022, 13, 229.	5.8	22
133	Architecture and gating of Hv1 proton channels. Journal of Physiology, 2009, 587, 5325-5329.	1.3	21
134	Dimer interaction in the Hv1 proton channel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20898-20907.	3.3	21
135	Photoswitching of Cell Surface Receptors Using Tethered Ligands. Methods in Molecular Biology, 2014, 1148, 45-68.	0.4	21
136	Cell specific photoswitchable agonist for reversible control of endogenous dopamine receptors. Nature Communications, 2021, 12, 4775.	5.8	20
137	Two-photon scanning microscopy of in vivo sensory responses of cortical neurons genetically encoded with a fluorescent voltage sensor in rat. Frontiers in Neural Circuits, 2012, 6, 15.	1.4	19
138	Colloids as Mobile Substrates for the Implantation and Integration of Differentiated Neurons into the Mammalian Brain. PLoS ONE, 2012, 7, e30293.	1.1	17
139	Optical Control of Glutamate Receptors of the NMDA-Kind in Mammalian Neurons, with the Use of Photoswitchable Ligands. Neuromethods, 2018, , 293-325.	0.2	16
140	In vivo volumetric imaging of calcium and glutamate activity at synapses with high spatiotemporal resolution. Nature Communications, 2021, 12, 6630.	5.8	16
141	Specializations of a pheromonal glomerulus in the <i>Drosophila</i> olfactory system. Journal of Neurophysiology, 2011, 105, 1711-1721.	0.9	15
142	Calmodulin overexpression does not alter Ca _v 1.2 function or oligomerization state. Channels, 2011, 5, 320-324.	1.5	14
143	Optogenetic Retinal Gene Therapy with the Light Gated GPCR Vertebrate Rhodopsin. Methods in Molecular Biology, 2018, 1715, 177-189.	0.4	14
144	Photopharmacology for vision restoration. Current Opinion in Pharmacology, 2022, 65, 102259.	1.7	10

#	Article	IF	CITATIONS
145	[14] Single ion channel imaging. Methods in Enzymology, 2003, 361, 304-319.	0.4	9
146	Measuring Behavioral Individuality in the Acoustic Startle Behavior in Zebrafish. Bio-protocol, 2017, 7,	0.2	9
147	Slow cardioacceleration mediated by noncholinergic transmission in the stellate ganglion of the cat. Canadian Journal of Physiology and Pharmacology, 1988, 66, 1066-1074.	0.7	8
148	Assembly of Potassium Channels. Annals of the New York Academy of Sciences, 1993, 707, 51-59.	1.8	7
149	BMP signaling and microtubule organization regulate synaptic strength. Neuroscience, 2015, 291, 155-166.	1.1	7
150	MEC-10 and MEC-19 Reduce the Neurotoxicity of the MEC-4(d) DEG/ENaC Channel in Caenorhabditis elegans. G3: Genes, Genomes, Genetics, 2016, 6, 1121-1130.	0.8	6
151	Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation. Nature Communications, 2021, 12, 2694.	5.8	6
152	Molecular basis of K+ channel inactivation gating. , 1993, 63, 338-351.		5
153	Green fluorescent protein-based sensors for detecting signal transduction and monitoring ion channel function. Methods in Enzymology, 2000, 327, 249-259.	0.4	4
154	Measuring Membrane Voltage with Fluorescent Proteins. Cold Spring Harbor Protocols, 2013, 2013, pdb.top075804.	0.2	4
155	Molecular Handles for the Mechanical Manipulation of Single-Membrane Proteins in Living Cells. IEEE Transactions on Nanobioscience, 2005, 4, 269-276.	2.2	3
156	Green Fluorescent Proteins (GFPs) for Measuring Voltage. Cold Spring Harbor Protocols, 2010, 2010, pdb.top76-pdb.top76.	0.2	3
157	To dislodge an enzyme from an ion channel, try steroids. Nature Chemical Biology, 2008, 4, 650-651.	3.9	2
158	New technologies. Current Opinion in Neurobiology, 2009, 19, 511-512.	2.0	2
159	Bringing Optogenetics to the Synapse. Neuron, 2013, 79, 209-210.	3.8	2
160	Genetically Encoded Protein Sensors of Membrane Potential. , 2010, , 157-163.		2
161	Multiple C-terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization. EMBO Journal, 2010, 29, 4062-4062.	3.5	1
162	3 Challenges and opportunities for optochemical genetics. , 2013, , 35-46.		1

#	Article	IF	CITATIONS
163	Fluorescent Labeling for Patch-Clamp Fluorometry (PCF) Measurements of Real-Time Protein Motion in Ion Channels. Methods in Molecular Biology, 2015, 1266, 93-106.	0.4	1
164	How Do Voltage-Gated Channels Sense the Membrane Potential?. , 2003, , 209-214.		1
165	Fluorescence Techniques for Studying Ion Channel Gating: VCF, FRET, and LRET. , 2019, , 1-10.		1
166	All Optical platform for Parallel and Spatiotemporal Control of Neuronal Activity. , 2008, , .		0
167	Photoswitchable Ligand-Gated Ion Channels. Neuromethods, 2011, , 267-285.	0.2	0
168	Optogenetics., 2022,,.		0