
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9467750/publications.pdf Version: 2024-02-01

NIECE FURTADO

#	Article	IF	CITATIONS
1	Andrographis paniculata Formulations: Impact on Diterpene Lactone Oral Bioavailability. European Journal of Drug Metabolism and Pharmacokinetics, 2022, 47, 19-30.	0.6	13
2	Ent―hardwickiic acid from C. pubiflora and its microbial metabolites are more potent than fluconazole in vitro against Candida glabrata. Letters in Applied Microbiology, 2022, , .	1.0	2
3	Production of more potent anti andida labdane diterpenes by biotransformation using Cunninghamella elegans. Chemistry and Biodiversity, 2022, , .	1.0	1
4	Disinfectant activities of extracts and metabolites from Baccharis dracunculifolia DC. Letters in Applied Microbiology, 2022, 75, 261-270.	1.0	3
5	New antifungal ent-labdane diterpenes against Candida glabrata produced by microbial transformation of ent-polyalthic acid. Bioorganic Chemistry, 2020, 95, 103560.	2.0	4
6	Schistosomicidal activity of kaurane, labdane and clerodane-type diterpenes obtained by fungal transformation. Process Biochemistry, 2020, 98, 34-40.	1.8	15
7	Fungal biocatalysts for labdane diterpene hydroxylation. Bioprocess and Biosystems Engineering, 2020, 43, 1051-1059.	1.7	6
8	Essential oils from <i>Tithonia diversifolia</i> display potent anti-oedematogenic effects and inhibit acid production by cariogenic bacteria. Journal of Essential Oil Research, 2019, 31, 43-52.	1.3	7
9	Antiurolithic activity and biotransformation of galloylquinic acids by Aspergillus alliaceus ATCC10060, Aspergillus brasiliensis ATCC 16404, and Cunninghamella elegans ATCC 10028b. Biocatalysis and Agricultural Biotechnology, 2019, 18, 101012.	1.5	7
10	Evaluation of lemongrass and ginger essential oils to inhibit <scp><i>Listeria monocytogenes</i></scp> in biofilms. Journal of Food Safety, 2019, 39, e12627.	1.1	10
11	Use of spinning band distillation equipment for fractionation of volatile compounds of <i>Copaifera</i> oleoresins for developing a validated gas chromatographic method and evaluating antimicrobial activity. Biomedical Chromatography, 2019, 33, e4412.	0.8	11
12	lontophoresis-stimulated silk fibroin films as a peptide delivery system for wound healing. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 128, 147-155.	2.0	23
13	An Overview of Biotransformation and Toxicity of Diterpenes. Molecules, 2018, 23, 1387.	1.7	48
14	Inactivation of β-Lapachone Cytotoxicity by Filamentous Fungi that Mimic the Human Blood Metabolism. European Journal of Drug Metabolism and Pharmacokinetics, 2017, 42, 213-220.	0.6	11
15	Gasâ€phase fragmentation of protonated piplartine and its fungal metabolites using tandem mass spectrometry and computational chemistry. Journal of Mass Spectrometry, 2017, 52, 517-525.	0.7	8
16	Pentacyclic Triterpene Bioavailability: An Overview of In Vitro and In Vivo Studies. Molecules, 2017, 22, 400.	1.7	137
17	Antifungal and Cytotoxic Assessment of Lapachol Derivatives Produced by Fungal Biotransformation. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	1
18	Microbial Metabolism of Atovaquone and Cytotoxicity of the Produced Phase I Metabolite. European Journal of Drug Metabolism and Pharmacokinetics, 2016, 41, 645-650.	0.6	8

#	Article	IF	CITATIONS
19	Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Revista Brasileira De Farmacognosia, 2015, 25, 641-650.	0.6	53
20	Gastroprotective activity of the hydroethanolic extract and isolated compounds from the leaves of Solanum cernuum Vell Journal of Ethnopharmacology, 2015, 172, 421-429.	2.0	19
21	Non-terpenoid biotransformations by Mucor species. Phytochemistry Reviews, 2015, 14, 745-764.	3.1	10
22	ASYMMETRIC SULFOXIDATION OF ALBENDAZOLE TO RICOBENDAZOLE BY FUNGI: EFFECT OF pH. Quimica Nova, 2015, , .	0.3	1
23	Cytotoxicity of lapachol metabolites produced by probiotics. Letters in Applied Microbiology, 2014, 59, 108-114.	1.0	28
24	Transformation of saturated nitrogen-containing heterocyclic compounds by microorganisms. Applied Microbiology and Biotechnology, 2014, 98, 1497-1506.	1.7	9
25	Pimaraneâ€type Diterpenes Obtained by Biotransformation: Antimicrobial Properties Against Clinically Isolated Gramâ€positive Multidrugâ€resistant Bacteria. Phytotherapy Research, 2013, 27, 1502-1507.	2.8	14
26	Terpenoid biotransformations by Mucor species. Phytochemistry Reviews, 2013, 12, 857-876.	3.1	20
27	Biotransformation of ent-pimaradienoic acid by cell cultures of Aspergillus niger. Bioorganic and Medicinal Chemistry, 2013, 21, 5870-5875.	1.4	14
28	Microbial transformation of β-lapachone to its glycosides by Cunninghamella elegans ATCC 10028b. Phytochemistry Letters, 2013, 6, 657-661.	0.6	9
29	Evaluation of dispersive liquid–liquid microextraction in the stereoselective determination of cetirizine following the fungal biotransformation of hydroxyzine and analysis by capillary electrophoresis. Talanta, 2013, 116, 743-752.	2.9	23
30	Î-Lactam derivative from thermophilic soil fungus exhibitsinÂvitroanti-allergic activity. Natural Product Research, 2012, 26, 2168-2175.	1.0	8
31	Antibacterial compound from the endophytic fungus <i>Phomopsis longicolla</i> isolated from the tropical red seaweed <i>Bostrychia radicans</i> . Botanica Marina, 2012, 55, 435-440.	0.6	42
32	Fungal Transformation and Schistosomicidal Effects of Pimaradienoic Acid. Chemistry and Biodiversity, 2012, 9, 1465-1474.	1.0	19
33	Assessment of the stereoselective fungal biotransformation of albendazole and its analysis by HPLC in polar organic mode. Journal of Pharmaceutical and Biomedical Analysis, 2012, 61, 100-107.	1.4	23
34	Evaluation of <i>ent</i> -Kaurenoic Acid Derivatives for their Anticariogenic Activity. Natural Product Communications, 2011, 6, 1934578X1100600.	0.2	7
35	Antimicrobial Evaluation of Diterpenes from Copaifera langsdorffii Oleoresin Against Periodontal Anaerobic Bacteria. Molecules, 2011, 16, 9611-9619.	1.7	86
36	Biotransformation using Mucor rouxii for the production of oleanolic acid derivatives and their antimicrobial activity against oral pathogens. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1493-1498.	1.4	27

#	Article	IF	CITATIONS
37	Antimicrobial activity of terpenoids from <i>Copaifera langsdorffii</i> Desf. against cariogenic bacteria. Phytotherapy Research, 2011, 25, 215-220.	2.8	89
38	Enantioselective fungal biotransformation of risperidone in liquid culture medium by capillary electrophoresis and hollow fiber liquidâ€phase microextraction. Electrophoresis, 2011, 32, 2765-2775.	1.3	22
39	Validation of a gas chromatographic method to quantify sesquiterpenes in copaiba oils. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 653-659.	1.4	46
40	Antimicrobial Activity of Diterpenes from Viguiera arenaria against Endodontic Bacteria. Molecules, 2011, 16, 543-551.	1.7	46
41	Seasonality Role on the Phenolics from Cultivated <i>Baccharis dracunculifolia</i> . Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-8.	0.5	21
42	Evaluation of the Potential of Brazilian Propolis against UV-Induced Oxidative Stress. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-8.	0.5	34
43	Evaluation of ent-kaurenoic acid derivatives for their anticariogenic activity. Natural Product Communications, 2011, 6, 777-80.	0.2	24
44	Anticariogenic Properties of ent-Pimarane Diterpenes Obtained by Microbial Transformation. Molecules, 2010, 15, 8553-8566.	1.7	21
45	Screening of Filamentous Fungi to Identify Biocatalysts for Lupeol Biotransformation. Molecules, 2010, 15, 6140-6151.	1.7	30
46	Antimicrobial activity of Aegiphila sellowiana Cham., Lamiaceae, against oral pathogens. Revista Brasileira De Farmacognosia, 2010, 20, 246-249.	0.6	10
47	Estudo comparativo entre as metodologias preconizadas pelo CLSI e pelo EUCAST para avaliação da atividade antifúngica. Quimica Nova, 2009, 32, 498-502.	0.3	20
48	Antimicrobial ent-pimarane diterpenes from Viguiera arenaria against Gram-positive bacteria. Fìtoterapìâ, 2009, 80, 432-436.	1.1	46
49	A validated reverseâ€phase HPLC analytical method for the quantification of phenolic compounds in <i>Baccharis dracunculifolia</i> . Phytochemical Analysis, 2009, 20, 24-32.	1.2	37
50	Pimarane-type Diterpenes: Antimicrobial Activity against Oral Pathogens. Molecules, 2009, 14, 191-199.	1.7	82
51	Hypoglicemic effect of Leandra lacunosa in normal and alloxan-induced diabetic rats. Fìtoterapìâ, 2008, 79, 356-360.	1.1	38
52	Antimicrobial Activity of Kaurane Diterpenes against Oral Pathogens. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2008, 63, 326-330.	0.6	50
53	Antimicrobial Activity of the Extract and Isolated Compounds from Baccharis dracunculifolia D. C. (Asteraceae). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2008, 63, 40-46.	0.6	54
54	Biotransformation of lupeol by Penicillium roqueforti. Planta Medica, 2008, 74, .	0.7	1

#	Article	IF	CITATIONS
55	Antibacterial Activity of Triterpene Acids and Semi-Synthetic Derivatives against Oral Pathogens. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2007, 62, 668-672.	0.6	67
56	Antimicrobial activity of Syzygium cumini (Myrtaceae) leaves extract. Brazilian Journal of Microbiology, 2007, 38, 381-384.	0.8	58
57	A reliable quantitative method for the analysis of phenolic compounds in Brazilian propolis by reverse phase high performance liquid chromatography. Journal of Separation Science, 2007, 30, 2656-2665.	1.3	66
58	Fragmentation of diketopiperazines from <i>Aspergillus fumigatus</i> by electrospray ionization tandem mass spectrometry (ESIâ€MS/MS). Journal of Mass Spectrometry, 2007, 42, 1279-1286.	0.7	41
59	Evaluation of piper cubeba extract, (-)-cubebin and its semi-synthetic derivatives against oral pathogens. Phytotherapy Research, 2007, 21, 420-422.	2.8	61
60	A study of the trypanocidal activity of triterpene acids isolated fromMiconia species. Phytotherapy Research, 2006, 20, 474-478.	2.8	42
61	Improvement of trypanocidal metabolites production by Aspergillus fumigatus using neural networks. Microbiological Research, 2005, 160, 141-148.	2.5	8
62	Diketopiperazines produced by an Aspergillus fumigatus Brazilian strain. Journal of the Brazilian Chemical Society, 2005, 16, 1448-1453.	0.6	88
63	The potential of an Aspergillus fumigatus Brazilian strain to produce antimicrobial secondary metabolites. Brazilian Journal of Microbiology, 2005, 36, 357.	0.8	7
64	Antibacterial activity from Penicillium corylophilum Dierckx. Microbiological Research, 2004, 159, 317-322.	2.5	32
65	Activity of the Pinus elliottii resin compounds against Lernaea cyprinacea in vitro. Veterinary Parasitology, 2003, 118, 143-149.	0.7	19
66	The antimicrobial activity of Aspergillus fumigatus is enhanced by a pool of bacteria. Microbiological Research, 2002, 157, 207-211.	2.5	25
67	Active substances against trypomastigote forms of Trypanosoma cruzi and microorganisms are produced in sequence by Talaromyces flavus. Microbiological Research, 2002, 157, 201-206.	2.5	7