
Sébastien Déon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9467637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of fouling resistant and highly perm-selective novel PSf/GO-vanillin nanofiltration membrane for efficient water purification. Journal of Hazardous Materials, 2022, 421, 126744.	12.4	28
2	Development in forward Osmosis-Membrane distillation hybrid system for wastewater treatment. Separation and Purification Technology, 2022, 286, 120498.	7.9	39
3	Tailoring the structure of polysulfone nanocomposite membranes by incorporating iron oxide doped aluminium oxide for excellent separation performance and antifouling property. Environmental Science: Water Research and Technology, 2022, 8, 1059-1077.	2.4	6
4	Methods for selenium removal from contaminated waters: a review. Environmental Chemistry Letters, 2022, 20, 2019-2041.	16.2	14
5	Experimental and numerical investigation of specific behaviour of fluoride ions during filtration of pure salt water solutions with titania membrane. Desalination, 2022, 537, 115870.	8.2	0
6	Insights into the mechanically resilient, well-balanced polymeric membranes by incorporating Rhizophora mucronata derived activated carbon for sustainable wastewater decontamination. Chemosphere, 2022, 306, 135528.	8.2	5
7	Treatment of controlled discharge leachate by coagulation-flocculation: influence of operational conditions. Separation Science and Technology, 2021, 56, 168-183.	2.5	21
8	Impact of graphitic carbon nitride nanosheets in mixed- matrix membranes for removal of heavy metals from water. Journal of Water Process Engineering, 2021, 41, 102026.	5.6	23
9	Fabrication of zinc doped aluminium oxide/polysulfone mixed matrix membranes for enhanced antifouling property and heavy metal removal. Chemosphere, 2021, 275, 130024.	8.2	53
10	A Novel Numerical Procedure to Estimate the Electric Charge in the Pore from Filtration of Single-Salt Solutions. Membranes, 2021, 11, 726.	3.0	2
11	Technologies to Remove Selenium from Water and Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 207-304.	0.5	11
12	Electrospun nanofibers: role of nanofibers in water remediation and effect of experimental variables on their nano topography and application processes. Environmental Science: Water Research and Technology, 2021, 7, 2166-2205.	2.4	6
13	Modification of commercial UF membranes by electrospray deposition of polymers for tailoring physicochemical properties and enhancing filtration performances. Journal of Membrane Science, 2020, 598, 117805.	8.2	18
14	Preparation of novel high permeability and antifouling polysulfone-vanillin membrane. Desalination, 2020, 496, 114759.	8.2	32
15	Novel poly (ionic liquid)-based anion exchange membranes for efficient and rapid acid recovery from industrial waste. Chemical Engineering Journal, 2020, 401, 126148.	12.7	32
16	The efficient mixed matrix antifouling membrane for surfactant stabilized oil-in-water nanoemulsion separation. Journal of Water Process Engineering, 2019, 32, 100959.	5.6	16
17	Understanding the separation of anion mixtures by TiO2 membranes: Numerical investigation and effect of alkaline treatment on physicochemical properties. Chemical Engineering Journal, 2019, 363, 365-373.	12.7	13
18	Understanding the impact of poly(allylamine) plasma grafting on the filtration performances of a commercial polymeric membrane. Separation and Purification Technology, 2019, 212, 30-39.	7.9	14

Sébastien Déon

#	Article	IF	CITATIONS
19	Application of a new dynamic transport model to predict the evolution of performances throughout the nanofiltration of single salt solutions in concentration and diafiltration modes. Water Research, 2018, 136, 22-33.	11.3	13
20	Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. Journal of Cleaner Production, 2018, 171, 927-933.	9.3	119
21	Effect of hydraulic coefficient on membrane performance for rejection of emerging contaminants. Chemical Engineering Journal, 2018, 334, 2392-2400.	12.7	21
22	Novel modified poly vinyl chloride blend membranes for removal of heavy metals from mixed ion feed sample. Journal of Hazardous Materials, 2017, 331, 289-299.	12.4	75
23	Remediation of Solutions Containing Oxyanions of Selenium by Ultrafiltration: Study of Rejection Performances with and without Chitosan Addition. Industrial & Engineering Chemistry Research, 2017, 56, 10461-10471.	3.7	16
24	Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan. Arabian Journal of Chemistry, 2017, 10, S3826-S3839.	4.9	86
25	Modification of the Selectivity Properties of Tubular Ceramic Membranes after Alkaline Treatment. Membranes, 2017, 7, 65.	3.0	8
26	Chapitre XIII. Traitement des eaux par nanofiltrationÂ: généralités, mécanismes et applications. , 2017, , 373-415.		0
27	Assessment of the SEDE Model: Determination of Membrane Potential and Salt Rejection of a Nanofiltration Membrane. International Journal of Membrane Science and Technology, 2016, 3, .	0.2	0
28	Theoretical Understanding of How Solution Properties Govern Nanofiltration Performances. International Journal of Membrane Science and Technology, 2016, 3, .	0.2	0
29	Characterization of the isolated active layer of a NF membrane by electrochemical impedance spectroscopy. Journal of Membrane Science, 2015, 477, 172-182.	8.2	31
30	Tangential electrokinetic characterization of hollow fiber membranes: Effects of external solution on cell electric conductance and streaming current. Journal of Membrane Science, 2015, 496, 293-300.	8.2	3
31	Decontamination of polluted discharge waters from surface treatment industries by pressure-driven membranes: Removal performances and environmental impact. Chemical Engineering Journal, 2014, 258, 309-319.	12.7	32
32	Understanding of Ion Transport in a Na–Mordenite Membrane: Use of Numerical Modeling To Estimate Surface–Solute Interactions in the Pore. Industrial & Engineering Chemistry Research, 2014, 53, 8221-8227.	3.7	6
33	Numerical Ways to Characterize the Deterioration of Nanofiltration Membranes. International Journal of Membrane Science and Technology, 2014, 1, 1-8.	0.2	1
34	Concentration polarization phenomenon during the nanofiltration of multi-ionic solutions: Influence of the filtrated solution and operating conditions. Water Research, 2013, 47, 2260-2272.	11.3	49
35	Prediction of single salt rejection by NF membranes: An experimental methodology to assess physical parameters from membrane and streaming potentials. Desalination, 2013, 315, 37-45.	8.2	25
36	Dehydration and pore swelling effects on the transfer of PEG through NF membranes. Membrane Water Treatment, 2013, 4, 127-142.	0.5	3

Sébastien Déon

#	Article	IF	CITATIONS
37	A new method for in line electrokinetic characterization of cakes. Membrane Water Treatment, 2013, 4, 157-174.	0.5	0
38	REMOVED: Impact of Pore Swelling and Salting-out Effects on the Transfer of PEG Through NF Membranes. Procedia Engineering, 2012, 44, 1801-1805.	1.2	0
39	REMOVED: Influence of Steric, Electric and Dielectric Effects on Membrane Potential in Binary and Ternary Electrolytes. Procedia Engineering, 2012, 44, 1796-1800.	1.2	0
40	REMOVED: Electrokinetic Characterization of Hollow Fibers by Streaming Current, Streaming Potential and Electric Conductance. Procedia Engineering, 2012, 44, 524-528.	1.2	0
41	Tangential streaming potential/current measurements for the characterization of composite membranes. Journal of Membrane Science, 2012, 423-424, 413-421.	8.2	35
42	REMOVED: Experimental Determination of NF Transport Model Parameters for Predictive Purposes. Procedia Engineering, 2012, 44, 1792-1795.	1.2	0
43	How to use a multi-ionic transport model to fully predict rejection of mineral salts by nanofiltration membranes. Chemical Engineering Journal, 2012, 189-190, 24-31.	12.7	52
44	Electrokinetic characterization of hollow fibers by streaming current, streaming potential and electric conductance. Journal of Membrane Science, 2012, 411-412, 193-200.	8.2	23
45	The twoâ €d imensional pore and polarization transport model to describe mixtures separation by nanofiltration: Model validation. AICHE Journal, 2011, 57, 985-995.	3.6	28
46	A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes. Chemical Engineering Science, 2011, 66, 2823-2832.	3.8	65
47	Unsteady transport of divalent salt through a mineral membrane of ultrafiltration: Numerical estimation of physical parameters. Desalination, 2011, 265, 184-189.	8.2	5
48	Electrokinetic characterisation of particle deposits from streaming potential coupled with permeate flux measurements during dead-end filtration. Journal of Membrane Science, 2011, 378, 224-232.	8.2	17
49	Assessment of dielectric contribution in the modeling of multi-ionic transport through nanofiltration membranes. Journal of Membrane Science, 2011, 378, 214-223.	8.2	37
50	Influence of salts on the rejection of polyethyleneglycol by an NF organic membrane: Pore swelling and salting-out effects. Journal of Membrane Science, 2010, 347, 174-182.	8.2	89
51	Surface properties of ceramic ultrafiltration TiO2 membranes: Effects of surface equilibriums on salt retention. Desalination, 2010, 255, 1-8.	8.2	42
52	Determining the Dielectric Constant inside Pores of Nanofiltration Membranes from Membrane Potential Measurements. Langmuir, 2010, 26, 14628-14635.	3.5	33
53	Transport of salt mixtures through nanofiltration membranes: Numerical identification of electric and dielectric contributions. Separation and Purification Technology, 2009, 69, 225-233.	7.9	64
54	Transfer of Monovalent Salts through Nanofiltration Membranes:Â A Model Combining Transport through Pores and the Polarization Layer. Industrial & Engineering Chemistry Research, 2007, 46, 6752-6761.	3.7	22

#	Article	IF	CITATIONS
55	Modeling nanofiltration with Nernst-Planck approach and polarization layer. AICHE Journal, 2007, 53, 1952-1969.	3.6	64
56	Oil-Polluted Sands in a Fluidized Bed. Industrial & Engineering Chemistry Research, 2005, 44, 1585-1591.	3.7	2
57	Extraction of ethanol from aqueous solutions by emulsion liquid membrane: optimization of operating conditions and influence of salts in the feed phase. , 0, 88, 106-115.		3