Steve Granick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9467462/publications.pdf Version: 2024-02-01

		29994	23472
167	12,838	54	111
papers	citations	h-index	g-index
175	175	175	11318
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Response to Comment on "Boosted molecular mobility during common chemical reactions― Science, 2021, 371, .	6.0	20
2	Reincarnations of the phase separation problem. Nature Communications, 2021, 12, 911.	5.8	9
3	Using NMR to Test Molecular Mobility during a Chemical Reaction. Journal of Physical Chemistry Letters, 2021, 12, 2370-2375.	2.1	16
4	Active phase separation by turning towards regions of higher density. Nature Physics, 2021, 17, 961-967.	6.5	61
5	Mixed-Charge Nanocarriers Allow for Selective Targeting of Mitochondria by Otherwise Nonselective Dyes. ACS Nano, 2021, 15, 11470-11490.	7.3	7
6	Reply to Comment on "Using NMR to Test Molecular Mobility during a Chemical Reaction― Journal of Physical Chemistry Letters, 2021, 12, 5744-5747.	2.1	9
7	Molecules, the Ultimate Nanomotor: Linking Chemical Reaction Intermediates to their Molecular Diffusivity. ACS Nano, 2021, 15, 14947-14953.	7.3	15
8	Imaging Individual Molecules Using Liquid-phase TEM - Surprises and Research Opportunities. Microscopy and Microanalysis, 2021, 27, 3-4.	0.2	1
9	Intermediate states of molecular self-assembly from liquid-cell electron microscopy. Proceedings of the United States of America, 2020, 117, 1283-1292.	3.3	48
10	Rapid-prototyping a Brownian particle in an active bath. Soft Matter, 2020, 16, 8122-8127.	1.2	17
11	ÂAnatomy of cage formation in a two-dimensional glass-forming liquid. Nature, 2020, 587, 225-229.	13.7	32
12	Boosted molecular mobility during common chemical reactions. Science, 2020, 369, 537-541.	6.0	62
13	Apparatus to Measure Subnanometer Fluctuation of Giant Unilamellar Vesicle Membranes. Journal of Physical Chemistry A, 2020, 124, 4512-4516.	1.1	1
14	Micromotor That Carries Its Own Fuel Internally. Langmuir, 2020, 36, 7701-7705.	1.6	2
15	Master curve of boosted diffusion for 10 catalytic enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29435-29441.	3.3	30
16	Colloidal Flatlands Confronted with Urge for the Third Dimension. ACS Nano, 2019, 13, 9442-9448.	7.3	4
17	Single-crosslink microscopy in a biopolymer network dissects local elasticity from molecular fluctuations. Nature Communications, 2019, 10, 3314.	5.8	14
18	Robustness of FCS (Fluorescence Correlation Spectroscopy) with Quenchers Present. Journal of Physical Chemistry A, 2019, 123, 10184-10189.	1.1	9

#	Article	IF	CITATIONS
19	Synthetic asters as elastic and radial skeletons. Nature Communications, 2019, 10, 4954.	5.8	3
20	Biologically-active unilamellar vesicles from red blood cells. Biomaterials Science, 2019, 7, 1393-1398.	2.6	4
21	Steering Coacervation by a Pair of Broad-Spectrum Regulators. ACS Nano, 2019, 13, 2420-2426.	7.3	9
22	Enhanced Diffusion and Oligomeric Enzyme Dissociation. Journal of the American Chemical Society, 2019, 141, 20062-20068.	6.6	31
23	Enzyme leaps fuel antichemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 14-18.	3.3	110
24	Preface: Special Topic on Chemical Physics of Charged Macromolecules. Journal of Chemical Physics, 2018, 149, 163001.	1.2	1
25	Comparing Geometry and Chemistry When Confined Molecules Diffuse in Monodisperse Metal–Organic Framework Pores. Journal of Physical Chemistry Letters, 2018, 9, 6399-6403.	2.1	3
26	lonic Janus Liquid Droplets Assembled and Propelled by Electric Field. Angewandte Chemie, 2018, 130, 17015-17018.	1.6	1
27	Catalytic enzymes are active matter. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10812-E10821.	3.3	98
28	lonic Janus Liquid Droplets Assembled and Propelled by Electric Field. Angewandte Chemie - International Edition, 2018, 57, 16773-16776.	7.2	13
29	Substrate curvature affects the shape, orientation, and polarization of renal epithelial cells. Acta Biomaterialia, 2018, 77, 311-321.	4.1	42
30	Longer-Lasting Electron-Based Microscopy of Single Molecules in Aqueous Medium. ACS Nano, 2018, 12, 8572-8578.	7.3	24
31	DNA molecules deviate from shortest trajectory when driven through hydrogel. Journal of Chemical Physics, 2018, 149, 163331.	1.2	6
32	How to better focus waves by considering symmetry and information loss. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6554-6559.	3.3	5
33	Deep line-temporal focusing with high axial resolution and a large field-of-view using intracavity control and incoherent pulse shaping. Optics Letters, 2018, 43, 4919.	1.7	2
34	Giant capsids from lattice self-assembly of cyclodextrin complexes. Nature Communications, 2017, 8, 15856.	5.8	65
35	Vector assembly of colloids on monolayer substrates. Nature Communications, 2017, 8, 15778.	5.8	4
36	Dynamic cross-correlations between entangled biofilaments as they diffuse. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3322-3327.	3.3	14

#	Article	IF	CITATIONS
37	Real-Space, <i>in Situ</i> Maps of Hydrogel Pores. ACS Nano, 2017, 11, 204-212.	7.3	22
38	Metal–Organic Framework "Swimmers―with Energy-Efficient Autonomous Motility. ACS Nano, 2017, 11, 10914-10923.	7.3	28
39	Liquidâ€Cell Electron Microscopy of Adsorbed Polymers. Advanced Materials, 2017, 29, 1703555.	11.1	50
40	Cell migration in microengineered tumor environments. Lab on A Chip, 2017, 17, 4171-4185.	3.1	51
41	Active colloids with collective mobility status and research opportunities. Chemical Society Reviews, 2017, 46, 5551-5569.	18.7	145
42	From dynamic self-assembly to networked chemical systems. Chemical Society Reviews, 2017, 46, 5647-5678.	18.7	241
43	Janus Particle Synthesis, Assembly, and Application. Langmuir, 2017, 33, 6964-6977.	1.6	251
44	Effective temperature concept evaluated in an active colloid mixture. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7513-7518.	3.3	70
45	Reconfiguring active particles by electrostaticÂimbalance. Nature Materials, 2016, 15, 1095-1099.	13.3	414
46	Directed Selfâ€Assembly Pathways of Active Colloidal Clusters. Angewandte Chemie - International Edition, 2016, 55, 5166-5169.	7.2	87
47	Directed Selfâ€Assembly Pathways of Active Colloidal Clusters. Angewandte Chemie, 2016, 128, 5252-5255.	1.6	13
48	Preorganized Chromophores Facilitate Triplet Energy Migration, Annihilation and Upconverted Singlet Energy Collection. Journal of the American Chemical Society, 2016, 138, 6541-6549.	6.6	27
49	Natural selection in the colloid world: active chiral spirals. Faraday Discussions, 2016, 191, 35-46.	1.6	34
50	Nanoparticle puzzles and research opportunities that go beyond state of the art. Faraday Discussions, 2016, 186, 11-15.	1.6	4
51	Correlated two-particle diffusion in dense colloidal suspensions at early times: Theory and comparison to experiment. Physical Review E, 2015, 92, 052304.	0.8	3
52	Memoryless self-reinforcing directionality in endosomal active transport within living cells. Nature Materials, 2015, 14, 589-593.	13.3	123
53	Toward Design Rules of Directional Janus Colloidal Assembly. Annual Review of Physical Chemistry, 2015, 66, 581-600.	4.8	122
54	Scrutinizing evidence of no dilatancy upon stick–slip of confined fluids. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4972-E4972.	3.3	7

#	Article	IF	CITATIONS
55	Machine learning assembly landscapes from particle tracking data. Soft Matter, 2015, 11, 8141-8153.	1.2	53
56	A switch for phase shifting. Nature Materials, 2015, 14, 17-18.	13.3	4
57	Selective Janus Particle Assembly at Tipping Points of Thermally‣witched Wetting. Angewandte Chemie - International Edition, 2014, 53, 4364-4367.	7.2	51
58	Unorthodox bubbles when boiling in cold water. Physical Review E, 2014, 89, 013011.	0.8	3
59	Printing with magnets. Nature Materials, 2014, 13, 8-9.	13.3	8
60	Even Hard-Sphere Colloidal Suspensions Display Fickian Yet Non-Gaussian Diffusion. ACS Nano, 2014, 8, 3331-3336.	7.3	123
61	Orientationally Glassy Crystals of Janus Spheres. Physical Review Letters, 2014, 112, .	2.9	50
62	Colloidal-Sized Metal–Organic Frameworks: Synthesis and Applications. Accounts of Chemical Research, 2014, 47, 459-469.	7.6	302
63	Electric Field-Induced Assembly of Monodisperse Polyhedral Metal–Organic Framework Crystals. Journal of the American Chemical Society, 2013, 135, 34-37.	6.6	158
64	Modular Stitching To Image Single-Molecule DNA Transport. Journal of the American Chemical Society, 2013, 135, 6006-6009.	6.6	7
65	Single-Molecule Observation of Long Jumps in Polymer Adsorption. ACS Nano, 2013, 7, 9735-9742.	7.3	92
66	Linking synchronization to self-assembly using magnetic Janus colloids. Nature, 2012, 491, 578-581.	13.7	339
67	When Brownian diffusion is not Gaussian. Nature Materials, 2012, 11, 481-485.	13.3	442
68	Heat Transfer at Solid–Gas Interfaces by Photoacoustics at Brillouin Frequencies. Journal of Physical Chemistry C, 2012, 116, 10896-10903.	1.5	6
69	Janus and Multiblock Colloidal Particles. Langmuir, 2012, 28, 13555-13561.	1.6	117
70	Janus Colloidal Matchsticks. Journal of the American Chemical Society, 2012, 134, 12901-12903.	6.6	75
71	Innenrücktitelbild: Directional Self-Assembly of a Colloidal Metal-Organic Framework (Angew. Chem.) Tj ETQq1	1 0,7843 1.6	14 rgBT /Ove
72	Inside Back Cover: Directional Self-Assembly of a Colloidal Metal-Organic Framework (Angew. Chem.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf

#	Article	IF	CITATIONS
73	Triblock Colloids for Directed Self-Assembly. Journal of the American Chemical Society, 2011, 133, 7725-7727.	6.6	141
74	Supracolloidal Reaction Kinetics of Janus Spheres. Science, 2011, 331, 199-202.	6.0	479
75	Directed self-assembly of a colloidal kagome lattice. Nature, 2011, 469, 381-384.	13.7	1,068
76	Janus Particle Synthesis and Assembly. Advanced Materials, 2010, 22, 1060-1071.	11.1	690
77	Fluorescence recovery after photobleaching measurements of polymers in a surface forces apparatus. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2582-2588.	2.4	9
78	Singleâ€molecule methods in polymer science. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2542-2543.	2.4	6
79	Confining Potential when a Biopolymer Filament Reptates. Physical Review Letters, 2010, 104, 118301.	2.9	61
80	Anomalous yet Brownian. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15160-15164.	3.3	390
81	Fast, spatially resolved thermometry of Si and GaP crystals using pump-probe two-photon absorption. Journal of Applied Physics, 2009, 106, .	1.1	5
82	A Simple Method to Produce Trivalent Colloidal Particles. Langmuir, 2009, 25, 8915-8918.	1.6	76
83	Activated Surface Diffusion in a Simple Colloid System. Physical Review Letters, 2009, 102, 178303.	2.9	12
84	Isomeric colloidal clusters with shape-dependent mobility. Soft Matter, 2009, 5, 81-83.	1.2	8
85	Biomolecular Science of Liposome-Nanoparticle Constructs. Molecular Crystals and Liquid Crystals, 2009, 507, 18-25.	0.4	11
86	Solvent-Free Synthesis of Janus Colloidal Particles. Langmuir, 2008, 24, 10073-10077.	1.6	120
87	Controlling the Geometry (Janus Balance) of Amphiphilic Colloidal Particles. Langmuir, 2008, 24, 2438-2445.	1.6	202
88	Clusters of Amphiphilic Colloidal Spheres. Langmuir, 2008, 24, 621-625.	1.6	251
89	A Curious Antipathy for Water. Science, 2008, 322, 1477-1478.	6.0	106
90	Ligand–receptor binding on nanoparticle-stabilized liposome surfaces. Soft Matter, 2007, 3, 551-553.	1.2	19

#	Article	IF	CITATIONS
91	Interleaflet Diffusion Coupling When Polymer Adsorbs onto One Sole Leaflet of a Supported Phospholipid Bilayer. Macromolecules, 2007, 40, 1366-1368.	2.2	21
92	How Polymer Surface Diffusion Depends on Surface Coverage. Macromolecules, 2007, 40, 1243-1247.	2.2	70
93	Cationic Nanoparticles Stabilize Zwitterionic Liposomes Better than Anionic Ones. Journal of Physical Chemistry C, 2007, 111, 8233-8236.	1.5	53
94	Open questions about polymer friction. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 3237-3239.	2.4	7
95	Single-Particle Colloid Tracking in Four Dimensions. Langmuir, 2006, 22, 9812-9815.	1.6	56
96	Simple Method to Produce Janus Colloidal Particles in Large Quantity. Langmuir, 2006, 22, 9495-9499.	1.6	491
97	Clusters of Charged Janus Spheres. Nano Letters, 2006, 6, 2510-2514.	4.5	321
98	Methods to Track Single-Molecule Trajectories. Langmuir, 2006, 22, 5266-5272.	1.6	45
99	Open questions about polymer interfacial diffusion. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3434-3435.	2.4	7
100	Linear shear viscoelasticity of confined, end-attached polymers in a near-theta solvent. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3487-3496.	2.4	3
101	Charged polypeptide diffusion at a very high ionic strength. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3497-3502.	2.4	11
102	Polystyrene Latex Nanoparticles Shrink When Polyelectrolyte of the Same Charge Is Added. Macromolecules, 2004, 37, 2919-2923.	2.2	2
103	Modification of Boundary Lubrication by Oil-Soluble Friction Modifier Additives. Tribology Letters, 2003, 15, 127-134.	1.2	22
104	Macromolecules at surfaces: Research challenges and opportunities from tribology to biology. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2755-2793.	2.4	151
105	Slippery questions about complex fluids flowing past solids. Nature Materials, 2003, 2, 221-227.	13.3	362
106	Equation for Slip of Simple Liquids at Smooth Solid Surfaces. Langmuir, 2003, 19, 5065-5071.	1.6	153
107	A surface forces platform for dielectric measurements. Journal of Chemical Physics, 2003, 119, 547-554.	1.2	14
108	Biolubrication:Â Hyaluronic Acid and the Influence on Its Interfacial Viscosity of an Antiinflammatory Drug. Macromolecules, 2003, 36, 973-976.	2.2	38

#	Article	IF	CITATIONS
109	Platinum Nanoparticles at Mica Surfaces. Langmuir, 2003, 19, 7061-7070.	1.6	31
110	Reassessment of Solidification in Fluids Confined between Mica Sheets. Langmuir, 2003, 19, 8148-8151.	1.6	87
111	Simple Interpretation of Ionization and Helixâ ``Coil Stability Shift When a Polyelectrolyte Adsorbs. Langmuir, 2003, 19, 1980-1983.	1.6	10
112	An integrated platform for surface forces measurements and fluorescence correlation spectroscopy. Review of Scientific Instruments, 2003, 74, 3067-3072.	0.6	35
113	Watching macromolecules diffuse at surfaces and under confinement. Macromolecular Symposia, 2003, 201, 89-94.	0.4	4
114	Apparent Slip of Newtonian Fluids Past Adsorbed Polymer Layers. Macromolecules, 2002, 35, 4658-4663.	2.2	55
115	No-Slip Boundary Condition Switches to Partial Slip When Fluid Contains Surfactant. Langmuir, 2002, 18, 10058-10063.	1.6	105
116	Nanorheology of Aqueous Polyethylene Glycol (PEG). Macromolecules, 2002, 35, 4017-4022.	2.2	14
117	Layered, Erasable Polymer Multilayers Formed by Hydrogen-Bonded Sequential Self-Assembly. Macromolecules, 2002, 35, 301-310.	2.2	500
118	Surface Diffusion of Poly(ethylene glycol). Macromolecules, 2002, 35, 1776-1784.	2.2	130
119	Local Electrostatics within a Polyelectrolyte Multilayer with Embedded Weak Polyelectrolyte. Macromolecules, 2002, 35, 1805-1813.	2.2	131
120	Microviscosity in poly(ethylene oxide)-polypropylene oxide-poly(ethylene oxide) block copolymers probed by fluorescence depolarization kinetics. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2883-2888.	2.4	29
121	Diffusion of Polymer-Coated Nanoparticles Studied by Fluorescence Correlation Spectroscopy. Macromolecules, 2001, 34, 3123-3126.	2.2	17
122	Local Chain Dynamics of Adsorbed Polystyrene Studied by Time-Resolved Fluorescence Anisotropy. Macromolecules, 2001, 34, 8401-8404.	2.2	11
123	A Polymer's Dielectric Normal Modes Depend on Its Film Thickness When Confined between Nonwetting Surfaces. Macromolecules, 2001, 34, 8490-8495.	2.2	16
124	Origins of solidification when a simple molecular fluid is confined between two plates. Journal of Chemical Physics, 2001, 115, 1498-1512.	1.2	79
125	Friction and the Continuum Limit – Where is the Boundary?. Materials Research Society Symposia Proceedings, 2000, 651, 1.	0.1	2
126	Local Environment of Surface-Polyelectrolyte-Bound DNA Oligomers. Materials Research Society Symposia Proceedings, 2000, 651, 1.	0.1	1

#	Article	IF	CITATIONS
127	Diffusion of a polymer â€~pancake'. Nature, 2000, 406, 146-146.	13.7	164
128	Europe's hard forum for soft matter. Nature, 2000, 407, 297-297.	13.7	0
129	Shear-induced dilation of confined liquid films. Tribology Letters, 2000, 9, 55-62.	1.2	34
130	Healing of confined polymer films following deformation at high shear rate. Journal of Rheology, 2000, 44, 1169-1182.	1.3	3
131	Influence of Alignment of Crystalline Confining Surfaces on Static Forces and Shear in a Liquid Crystal, 4â€~-n-Pentyl-4-cyanobiphenyl. Langmuir, 2000, 16, 8368-8376.	1.6	44
132	DIELECTRIC RESPONSE OF POLYMER FILMS CONFINED BETWEEN MICA SURFACES. , 2000, , 229-249.		0
133	Dielectric response of polymer films confined between mica surfaces. Journal of Chemical Physics, 1999, 110, 9688-9696.	1.2	35
134	Title is missing!. Tribology Letters, 1999, 7, 161-172.	1.2	23
135	Orientation and Order of Aqueous Organic Ions Adsorbed to a Solid Surface. Journal of Physical Chemistry B, 1999, 103, 472-479.	1.2	12
136	Adsorption of human serum albumin: Dependence on molecular architecture of the oppositely charged surface. Journal of Chemical Physics, 1999, 110, 10153-10161.	1.2	54
137	How Polyelectrolyte Adsorption Depends on History: A Combined Fourier Transform Infrared Spectroscopy in Attenuated Total Reflection and Surface Forces Study. Langmuir, 1999, 15, 8474-8482.	1.6	57
138	Tribology of Confined Fomblin-Z Perfluoropolyalkyl Ethers:  Role of Chain-End Chemical Functionality. Journal of Physical Chemistry B, 1999, 103, 8711-8721.	1.2	40
139	Microscopic study of thin film lubrication and its contributions to macroscopic tribology. Tribology Letters, 1998, 5, 81-88.	1.2	75
140	Optorheological Studies of Sheared Confined Fluids with Mesoscopic Thickness. Langmuir, 1998, 14, 1156-1161.	1.6	35
141	Rate-Dependent Adhesion between Opposed Perfluoropoly(alkyl ether) Layers:  Dependence on Chain-End Functionality and Chain Length. Journal of Physical Chemistry B, 1998, 102, 6056-6063.	1.2	30
142	Infrared Dichroism and Surface Conformational Dynamics of Adsorbed Poly(dimethylsiloxane). Macromolecules, 1998, 31, 5450-5455.	2.2	27
143	Flow-Induced Deformation and Desorption of Adsorbed Polymers. Langmuir, 1998, 14, 4266-4271.	1.6	19
144	Polyelectrolyte adsorption onto an initially-bare solid surface of opposite electrical charge. Journal of Chemical Physics, 1998, 109, 6861-6868.	1.2	79

#	Article	IF	CITATIONS
145	Kinetic regimes of polyelectrolyte exchange between the adsorbed state and free solution. Journal of Chemical Physics, 1998, 109, 6869-6878.	1.2	34
146	Transition from static to kinetic friction in a model lubricated system. Journal of Chemical Physics, 1998, 109, 6889-6897.	1.2	81
147	Micron-gap rheo-optics with parallel plates. Journal of Chemical Physics, 1997, 107, 8664-8667.	1.2	32
148	Formation and Characterization of Covalently Bound Polyelectrolyte Brushes. Langmuir, 1997, 13, 4935-4938.	1.6	15
149	Surface Forces in the Tapping Mode:  Solvent Permeability and Hydrodynamic Thickness of Adsorbed Polymer Brushes. Macromolecules, 1997, 30, 1079-1085.	2.2	53
150	Apparent hydrodynamic thickness of densely grafted polymer layers in a theta solvent. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2961-2968.	2.4	12
151	The Bimodal Energy Landscape When Polymers Adsorb. Langmuir, 1996, 12, 994-996.	1.6	106
152	Critique of the Friction Coefficient Concept for Wet (Lubricated) Slidingâ€. Langmuir, 1996, 12, 4537-4542.	1.6	55
153	Notes on the Interpretation of Nanorheology Experiments. Materials Research Society Symposia Proceedings, 1996, 464, 45.	0.1	1
154	Spectroscopie Studies of Confined Molecules Under Shear. Materials Research Society Symposia Proceedings, 1996, 464, 89.	0.1	0
155	Temperature Gradients Induce Phase Separation in a Miscible Polymer Solution. Physical Review Letters, 1996, 77, 1990-1993.	2.9	36
156	Soft Matter in a Tight Spot: Nanorheology of Confined Liquids and Block Copolymers. Israel Journal of Chemistry, 1995, 35, 75-84.	1.0	95
157	PMMA adsorption over previously adsorbed PS studied by polarized FTIR-ATR. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 2429-2437.	2.4	16
158	Nanorheology of Polymers, Block Copolymers, and Complex Fluids. Materials Research Society Symposia Proceedings, 1994, 366, 113.	0.1	1
159	Stick to slip transition and adhesion of lubricated surfaces in moving contact. Journal of Chemical Physics, 1994, 101, 2606-2615.	1.2	124
160	Molecular Tribology of Fluid Lubrication: Shear Thinning. Tribology Transactions, 1992, 35, 405-410.	1.1	37
161	Kinetics of polymer adsorption and desorption. Physical Review Letters, 1991, 66, 899-902.	2.9	152
162	Self-assembly of octadecyltrichlorosilane monolayers on mica. Journal of Materials Research, 1990, 5, 1745-1751.	1.2	51

#	Article	IF	CITATIONS
163	Tribology Studied Using Atomically Smooth Surfaces. Tribology Transactions, 1990, 33, 436-446.	1.1	37
164	Self-assembly of octadecyltrichlorosilane films on mica. Journal of Applied Polymer Science, 1989, 37, 2767-2772.	1.3	41
165	Drive mechanism for a surface force apparatus. Review of Scientific Instruments, 1988, 59, 811-812.	0.6	4
166	Molecular Tribometry: Recent Results and Future Prospects. Materials Research Society Symposia Proceedings, 1988, 140, 125.	0.1	5
167	Confined liquid controversies near closure?. Physics Magazine, 0, 3, .	0.1	22