JÃ³nathan Heras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9467412/publications.pdf Version: 2024-02-01

ΙΔ3νατμανι Ηερας

#	Article	IF	CITATIONS
1	GelJ – a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics, 2015, 16, 270.	2.6	238
2	Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review. Computers in Biology and Medicine, 2021, 136, 104697.	7.0	97
3	Automatic Diagnosis of Schizophrenia in EEG Signals Using CNN-LSTM Models. Frontiers in Neuroinformatics, 2021, 15, 777977.	2.5	82
4	CLoDSA: a tool for augmentation in classification, localization, detection, semantic segmentation and instance segmentation tasks. BMC Bioinformatics, 2019, 20, 323.	2.6	54
5	IJ-OpenCV: Combining ImageJ and OpenCV for processing images in biomedicine. Computers in Biology and Medicine, 2017, 84, 189-194.	7.0	36
6	Antibiogramj: A tool for analysing images from disk diffusion tests. Computer Methods and Programs in Biomedicine, 2017, 143, 159-169.	4.7	28
7	LabelStoma: A tool for stomata detection based on the YOLO algorithm. Computers and Electronics in Agriculture, 2020, 178, 105751.	7.7	27
8	Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course. Journal of Science Education and Technology, 2016, 25, 439-449.	3.9	26
9	Machine Learning in Proof General: Interfacing Interfaces. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 118, 15-41.	0.8	26
10	Proof-Pattern Recognition and Lemma Discovery in ACL2. Lecture Notes in Computer Science, 2013, , 389-406.	1.3	22
11	Biomedical image classification made easier thanks to transfer and semi-supervised learning. Computer Methods and Programs in Biomedicine, 2021, 198, 105782.	4.7	21
12	A Certified Reduction Strategy for Homological Image Processing. ACM Transactions on Computational Logic, 2014, 15, 1-23.	0.9	19
13	A comparative analysis of the consistency and difference among online self-, peer-, external- and instructor-assessments: The competitive effect. Computers in Human Behavior, 2016, 60, 112-120.	8.5	17
14	SpheroidJ: An Open-Source Set of Tools for Spheroid Segmentation. Computer Methods and Programs in Biomedicine, 2021, 200, 105837.	4.7	14
15	DeepClas4Bio: Connecting bioimaging tools with deep learning frameworks for image classification. Computers in Biology and Medicine, 2019, 108, 49-56.	7.0	12
16	A survey of tools for analysing DNA fingerprints. Briefings in Bioinformatics, 2015, 17, 903-911.	6.5	11
17	fKenzo: A user interface for computations in Algebraic Topology. Journal of Symbolic Computation, 2011, 46, 685-698.	0.8	10
18	Recycling Proof Patterns in Coq: Case Studies. Mathematics in Computer Science, 2014, 8, 99-116.	0.4	10

JÃ³NATHAN HERAS

#	Article	IF	CITATIONS
19	Transfer learning features for predicting aesthetics through a novel hybrid machine learning method. Neural Computing and Applications, 2020, 32, 5889-5900.	5.6	10
20	Towards a Certified Computation of Homology Groups for Digital Images. Lecture Notes in Computer Science, 2012, , 49-57.	1.3	9
21	Automatic characterisation of dye decolourisation in fungal strains using expert, traditional, and deep features. Soft Computing, 2019, 23, 12799-12812.	3.6	9
22	MotilityJ: An open-source tool for the classification and segmentation of bacteria on motility images. Computers in Biology and Medicine, 2021, 136, 104673.	7.0	9
23	Computing persistent homology within Coq/SSReflect. ACM Transactions on Computational Logic, 2013, 14, 1-16.	0.9	8
24	The Benefits of Close-Domain Fine-Tuning for Table Detection in Document Images. Lecture Notes in Computer Science, 2020, , 199-215.	1.3	8
25	FrImCla: A Framework for Image Classification Using Traditional and Transfer Learning Techniques. IEEE Access, 2020, 8, 53443-53455.	4.2	7
26	Modelling algebraic structures and morphisms in ACL2. Applicable Algebra in Engineering, Communications and Computing, 2015, 26, 277-303.	0.5	6
27	Proving with ACL2 the Correctness of Simplicial Sets in the Kenzo System. Lecture Notes in Computer Science, 2011, , 37-51.	1.3	6
28	Incidence Simplicial Matrices Formalized in Coq/SSReflect. Lecture Notes in Computer Science, 2011, , 30-44.	1.3	6
29	Exploiting Parallelism in Coalgebraic Logic Programming. Electronic Notes in Theoretical Computer Science, 2014, 303, 121-148.	0.9	4
30	Surveying and benchmarking techniques to analyse DNA gel fingerprint images. Briefings in Bioinformatics, 2015, 17, bbv102.	6.5	4
31	Proof Mining with Dependent Types. Lecture Notes in Computer Science, 2017, , 303-318.	1.3	4
32	The Effects of Adding Non-Compulsory Exercises to an Online Learning Tool on Student Performance and Code Copying. ACM Transactions on Computing Education, 2019, 19, 1-22.	3.5	4
33	Mediated Access to Symbolic Computation Systems. Lecture Notes in Computer Science, 2008, , 446-461.	1.3	4
34	A Certified Module to Study Digital Images with the Kenzo System. Lecture Notes in Computer Science, 2012, , 113-120.	1.3	4
35	Verifying an Algorithm Computing Discrete Vector Fields for Digital Imaging. Lecture Notes in Computer Science, 2012, , 216-230.	1.3	4
36	ACL2(ml): Machine-Learning for ACL2. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 152, 61-75.	0.8	4

JÃ³nathan Heras

#	Article	IF	CITATIONS
37	Using Open Mathematical Documents to Interface Computer Algebra and Proof Assistant Systems. Lecture Notes in Computer Science, 2009, , 467-473.	1.3	4
38	SynapCountJ: A Tool for Analyzing Synaptic Densities in Neurons. , 2016, , .		4
39	SynapCountJ: A Validated Tool for Analyzing Synaptic Densities in Neurons. Communications in Computer and Information Science, 2017, , 41-55.	0.5	4
40	DecoFungi: a web application for automatic characterisation of dye decolorisation in fungal strains. BMC Bioinformatics, 2018, 19, 66.	2.6	3
41	Simplicial-Map Neural Networks Robust to Adversarial Examples. Mathematics, 2021, 9, 169.	2.2	3
42	UFOD: An AutoML framework for the construction, comparison, and combination of object detection models. Pattern Recognition Letters, 2021, 145, 135-140.	4.2	2
43	Integrating Multiple Sources to Answer Questions in Algebraic Topology. Lecture Notes in Computer Science, 2010, , 331-335.	1.3	2
44	Verifying a Plaftorm for Digital Imaging: A Multi-tool Strategy. Lecture Notes in Computer Science, 2013, , 66-81.	1.3	2
45	Mathematical knowledge management in algebraic topology. ACM Communications in Computer Algebra, 2012, 45, 236-237.	0.4	1
46	Exploring the differences between low-stakes proctored and unproctored language testing using an Internet-based application. Computer Assisted Language Learning, 2019, 32, 483-509.	7.1	1
47	Optimizing the Simplicial-Map Neural Network Architecture. Journal of Imaging, 2021, 7, 173.	3.0	1
48	Google Colaboratory for Quantifying Stomata in Images. Lecture Notes in Computer Science, 2020, , 231-238.	1.3	1
49	Combining Image Processing Techniques, OCR, andÂOMR forÂtheÂDigitization ofÂMusical Books. Lecture Notes in Computer Science, 2022, , 553-567.	1.3	1
50	Extending GelJ for interoperability: Filling the gap in the bioinformatics resources for population genetics analysis with dominant markers. Computer Methods and Programs in Biomedicine, 2017, 140, 69-76.	4.7	0
51	Monomial Resolutions for Efficient Computation of Simplicial Homology. , 2019, , .		Ο
52	A System for Computing and Reasoning in Algebraic Topology. Lecture Notes in Computer Science, 2011, , 295-297.	1.3	0
53	Obtaining an ACL2 Specification from an Isabelle/HOL Theory. Lecture Notes in Computer Science, 2014, , 49-63.	1.3	0
54	WekaBioSimilarity—Extending Weka with Resemblance Measures. Lecture Notes in Computer Science, 2016, , 89-98.	1.3	0

JÃ³NATHAN HERAS

#	Article	IF	CITATIONS
55	Towards Integrating ImageJ with Deep Biomedical Models. Advances in Intelligent Systems and Computing, 2019, , 334-338.	0.6	0
56	An On-Going Framework for Easily Experimenting with Deep Learning Models for Bioimaging Analysis. Advances in Intelligent Systems and Computing, 2019, , 330-333.	0.6	0
57	Jupyter Notebooks for Simplifying Transfer Learning. Lecture Notes in Computer Science, 2020, , 215-221.	1.3	0
58	Deep Detection Models forÂMeasuring Epidermal Bladder Cells. Lecture Notes in Computer Science, 2022, , 131-142.	1.3	0