
Xu-Dong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9467010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	P3/O3 Integrated Layered Oxide as Highâ€Power and Longâ€Life Cathode toward Naâ€lon Batteries. Small, 2021, 17, e2007236.	5.2	49
2	Investigation of factors affecting vertical sag of stretched wire. Nuclear Science and Techniques/Hewuli, 2021, 32, 1.	1.3	3
3	Bridging Interparticle Li ⁺ Conduction in a Soft Ceramic Oxide Electrolyte. Journal of the American Chemical Society, 2021, 143, 5717-5726.	6.6	144
4	<i>trans</i> -Difluoroethylene Carbonate as an Electrolyte Additive for Microsized SiO _{<i>x</i>} @C Anodes. ACS Applied Materials & Interfaces, 2021, 13, 24916-24924.	4.0	16
5	Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes. Nature Communications, 2021, 12, 5267.	5.8	122
6	Cooperative Shielding of Bi-Electrodes via In Situ Amorphous Electrode–Electrolyte Interphases for Practical High-Energy Lithium-Metal Batteries. Journal of the American Chemical Society, 2021, 143, 16768-16776.	6.6	68
7	Structure Design of Cathode Electrodes for Solidâ€State Batteries: Challenges and Progress. Small Structures, 2020, 1, 2000042.	6.9	73
8	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 6647-6651.	1.6	26
9	Perspective on liquid metal enabled space science and technology. Science China Technological Sciences, 2020, 63, 1127-1140.	2.0	20
10	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 6585-6589.	7.2	84
11	Lithiumâ€lon Batteries: Suppressing Manganese Dissolution via Exposing Stable {111} Facets for Highâ€Performance Lithiumâ€lon Oxide Cathode (Adv. Sci. 13/2019). Advanced Science, 2019, 6, 1970076.	5.6	14
12	Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nature Communications, 2019, 10, 4930.	5.8	181
13	Air-Stable and High-Voltage Layered P3-Type Cathode for Sodium-Ion Full Battery. ACS Applied Materials & Interfaces, 2019, 11, 24184-24191.	4.0	58
14	Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. Journal of the American Chemical Society, 2019, 141, 9165-9169.	6.6	272
15	A Stable Layered Oxide Cathode Material for Highâ€Performance Sodiumâ€ŀon Battery. Advanced Energy Materials, 2019, 9, 1803978.	10.2	191
16	Highâ€Capacity Cathode Material with High Voltage for Liâ€lon Batteries. Advanced Materials, 2018, 30, 1705575.	11.1	333
17	Gradiently Polymerized Solid Electrolyte Meets with Micro-/Nanostructured Cathode Array. ACS Applied Materials & Interfaces, 2018, 10, 18005-18011.	4.0	23
18	Unconventional hydrodynamics of hybrid fluid made of liquid metals and aqueous solution under applied fields. Frontiers in Energy, 2018, 12, 276-296.	1.2	19

XU-DONG ZHANG

#	Article	IF	CITATIONS
19	Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. Journal of the American Chemical Society, 2018, 140, 82-85.	6.6	404
20	Uniform Nucleation of Lithium in 3D Current Collectors via Bromide Intermediates for Stable Cycling Lithium Metal Batteries. Journal of the American Chemical Society, 2018, 140, 18051-18057.	6.6	138
21	Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances, 2018, 4, eaat5383.	4.7	337
22	Robust Electrodes with Maximized Spatial Catalysis for Vanadium Redox Flow Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38922-38927.	4.0	19
23	A Layered–Tunnel Intergrowth Structure for Highâ€Performance Sodiumâ€lon Oxide Cathode. Advanced Energy Materials, 2018, 8, 1800492.	10.2	116
24	Suppressing Surface Lattice Oxygen Release of Liâ€Rich Cathode Materials via Heterostructured Spinel Li ₄ Mn ₅ O ₁₂ Coating. Advanced Materials, 2018, 30, e1801751.	11.1	348
25	Mitigating Interfacial Potential Drop of Cathode–Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries. Journal of the American Chemical Society, 2018, 140, 6767-6770.	6.6	192
26	Ameliorating the Interfacial Problems of Cathode and Solid‣tate Electrolytes by Interface Modification of Functional Polymers. Advanced Energy Materials, 2018, 8, 1801528.	10.2	127
27	Exposing {010} Active Facets by Multiple‣ayer Oriented Stacking Nanosheets for Highâ€Performance Capacitive Sodium″on Oxide Cathode. Advanced Materials, 2018, 30, e1803765.	11.1	142
28	Designing High-Performance Composite Electrodes for Vanadium Redox Flow Batteries: Experimental and Computational Investigation. ACS Applied Materials & amp; Interfaces, 2018, 10, 22381-22388.	4.0	42
29	Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries. Nano Research, 2017, 10, 4201-4209.	5.8	56
30	Improving the stability of LiNi0.80Co0.15Al0.05O2 by AlPO4 nanocoating for lithium-ion batteries. Science China Chemistry, 2017, 60, 1230-1235.	4.2	52
31	Microbial-Phosphorus-Enabled Synthesis of Phosphide Nanocomposites for Efficient Electrocatalysts. Journal of the American Chemical Society, 2017, 139, 11248-11253.	6.6	70
32	Iron oxyfluorides as lithium-free cathode materials for solid-state Li metal batteries. Journal of Materials Chemistry A, 2017, 5, 18464-18468.	5.2	16
33	Structurally modulated Li-rich cathode materials through cooperative cation doping and anion hybridization. Science China Chemistry, 2017, 60, 1554-1560.	4.2	22
34	High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 42829-42835.	4.0	74
35	Cathode Materials: Enhancing the Kinetics of Liâ€Rich Cathode Materials through the Pinning Effects of Gradient Surface Na ⁺ Doping (Adv. Energy Mater. 6/2016). Advanced Energy Materials, 2016, 6, .	10.2	10
36	Enhancing the Kinetics of Liâ€Rich Cathode Materials through the Pinning Effects of Gradient Surface Na ⁺ Doping. Advanced Energy Materials, 2016, 6, 1501914.	10.2	288

Xu-Dong Zhang

#	Article	IF	CITATIONS
37	Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 20138-20146.	4.0	197
38	Hydrothermal Synthesis and Structural Characterization of a Three-Dimensional Coordination Polymer on Ag(I). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 730-734.	0.6	4
39	MnII, Cull and Coll coordination polymers showing antiferromagnetism, and the coexistence of spin frustration and long range magnetic ordering. CrystEngComm, 2013, 15, 7756.	1.3	24