Reinhart J Ceulemans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9466826/publications.pdf

Version: 2024-02-01

310 papers 25,497 citations

70 h-index 147 g-index

312 all docs

312 docs citations

312 times ranked

18368 citing authors

#	Article	IF	CITATIONS
1	Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 2002, 113, 223-243.	1.9	1,877
2	Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 2001, 107, 43-69.	1.9	1,579
3	Respiration as the main determinant of carbon balance in European forests. Nature, 2000, 404, 861-865.	13.7	1,438
4	Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 2010, 3, 315-322.	5.4	1,254
5	Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18052-18056.	3.3	880
6	Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 2001, 7, 269-278.	4.2	843
7	Tansley Review No. 71 Effects of elevated atmospheric CO 2 on woody plants. New Phytologist, 1994, 127, 425-446.	3.5	715
8	Tree responses to rising CO2in field experiments: implications for the future forest. Plant, Cell and Environment, 1999, 22, 683-714.	2.8	691
9	Stomatal conductance of forest species after longâ€term exposure to elevated CO 2 concentration: a synthesis. New Phytologist, 2001, 149, 247-264.	3.5	621
10	Europe's Terrestrial Biosphere Absorbs 7 to 12% of European Anthropogenic CO2 Emissions. Science, 2003, 300, 1538-1542.	6.0	551
11	Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, 2001, 107, 71-77.	1.9	493
12	Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell and Environment, 1999, 22, 1475-1495.	2.8	415
13	Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology, 2004, 10, 161-169.	4.2	392
14	Emerging Model Systems in Plant Biology: Poplar (Populus) as A Model Forest Tree. Journal of Plant Growth Regulation, 2000, 19, 306-313.	2.8	372
15	Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14014-14019.	3.3	353
16	Mycorrhizal Hyphal Turnover as a Dominant Process for Carbon Input into Soil Organic Matter. Plant and Soil, 2006, 281, 15-24.	1.8	345
17	Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiology, 2003, 23, 1263-1270.	1.4	239
18	Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. Tree Physiology, 2002, 22, 907-918.	1.4	185

#	Article	IF	CITATIONS
19	Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theoretical and Applied Climatology, 2005, 80, 121-141.	1.3	173
20	Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agricultural and Forest Meteorology, 2003, 119, 209-227.	1.9	166
21	Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. GCB Bioenergy, 2011, 3, 181-197.	2.5	159
22	Assessing forest soil CO2 efflux: an in situ comparison of four techniques. Tree Physiology, 2000, 20, 23-32.	1.4	158
23	Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environmental Pollution, 2004, 131, 485-494.	3.7	158
24	Next generation of elevated [CO ₂] experiments with crops: a critical investment for feeding the future world. Plant, Cell and Environment, 2008, 31, 1317-1324.	2.8	154
25	Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – Resume from the free-air fumigation study at Kranzberg Forest. Environmental Pollution, 2010, 158, 2527-2532.	3.7	140
26	Basal rates of soil respiration are correlated with photosynthesis in a mixed temperate forest. Global Change Biology, 2007, 13, 2008-2017.	4.2	133
27	Seasonal variations in leaf area index, leaf chlorophyll, and water content; scaling-up to estimate fAPAR and carbon balance in a multilayer, multispecies temperate forest. Tree Physiology, 1999, 19, 673-679.	1.4	132
28	Production physiology and growth potential of poplars under short-rotation forestry culture. Forest Ecology and Management, 1999, 121, 9-23.	1.4	124
29	Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeosciences, 2008, 5, 585-594.	1.3	124
30	Effects of CO2Enrichment on Trees and Forests: Lessons to be Learned in View of Future Ecosystem Studies. Annals of Botany, 1999, 84, 577-590.	1.4	122
31	Leaf-level phenotypic variability and plasticity of invasive Rhododendron ponticum and non-invasive llex aquifolium co-occurring at two contrasting European sites. Plant, Cell and Environment, 2003, 26, 941-956.	2.8	119
32	Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiology, 2003, 23, 505-516.	1.4	119
33	The carbon cost of fine root turnover in a Scots pine forest. Forest Ecology and Management, 2002, 168, 231-240.	1.4	118
34	Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics. Forest Ecology and Management, 2004, 187, 295-309.	1.4	117
35	Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world. Global Change Biology, 2006, 12, 1094-1106.	4.2	115
36	How do climate warming and plant species richness affect water use in experimental grasslands?. Plant and Soil, 2006, 288, 249-261.	1.8	113

#	Article	IF	CITATIONS
37	Biomass yield and energy balance of a short-rotation poplar coppice with multiple clones on degraded land during 16 years. Biomass and Bioenergy, 2013, 56, 157-165.	2.9	110
38	Effects of elevated atmospheric CO2 on phenology, growth and crown structure of Scots pine (Pinus) Tj ETQq0	0 0 rgBT /0	Overlock 10 T
39	Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand. Annales Des Sciences Forestià res, 1999, 56, 81-90.	1.1	104
40	Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation. Tree Physiology, 2003, 23, 805-814.	1.4	103
41	A comparison among eucalypt, poplar and willow characteristics with particular reference to a coppice, growth-modelling approach. Biomass and Bioenergy, 1996, 11, 215-231.	2.9	102
42	Crown architecture of <i>Populus </i> clones as determined by branch orientation and branch characteristics. Tree Physiology, 1990, 7, 157-167.	1.4	100
43	Plasticity in hydraulic architecture of Scots pine across Eurasia. Oecologia, 2007, 153, 245-259.	0.9	98
44	Elevated atmospheric CO2increases fine root production, respiration, rhizosphere respiration and soil CO2efflux in Scots pine seedlings. Global Change Biology, 1998, 4, 871-878.	4.2	96
45	Evidence for a persistent and extensive greening trend in Eurasia inferred from satellite vegetation index data. Journal of Geophysical Research, 2002, 107, ACL 4-1-ACL 4-14.	3.3	95
46	Energy performances of intensive and extensive short rotation cropping systems for woody biomass production in the EU. Renewable and Sustainable Energy Reviews, 2015, 41, 845-854.	8.2	95
47	Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model. Agricultural and Forest Meteorology, 2001, 106, 61-69.	1.9	94
48	Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Global Change Biology, 2009, 15, 2905-2920.	4.2	94
49	Seasonal changes in photosynthesis, respiration and NEE of a mixed temperate forest. Agricultural and Forest Meteorology, 2004, 126, 15-31.	1.9	93
50	Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential. Environmental Pollution, 2005, 133, 541-551.	3.7	90
51	Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land. Agricultural and Forest Meteorology, 2013, 169, 100-110.	1.9	90
52	Ecotones in vegetation ecology: methodologies and definitions revisited. Ecological Research, 2009, 24, 977-986.	0.7	89
53	Effects of CO 2 enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar (Populus). New Phytologist, 1995, 131, 99-107.	3.5	88
54	Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy. Plant, Cell and Environment, 1997, 20, 1301-1308.	2.8	88

#	Article	IF	Citations
55	Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. New Phytologist, 2001, 150, 665-674.	3.5	88
56	Dynamics of biomass production in a poplar coppice culture over three rotations (11 years). Forest Ecology and Management, 2008, 255, 1883-1891.	1.4	86
57	Establishment and two-year growth of a bio-energy plantation with fast-growing Populus trees in Flanders (Belgium): Effects of genotype and former land use. Biomass and Bioenergy, 2012, 42, 151-163.	2.9	85
58	Decision Tree Algorithm for Detection of Spatial Processes in Landscape Transformation. Environmental Management, 2004, 33, 62-73.	1.2	84
59	Synopsis of the CASIROZ Case Study: Carbon Sink Strength of Fagus sylvatica L. in a Changing Environment - Experimental Risk Assessment of Mitigation by Chronic Ozone Impact. Plant Biology, 2007, 9, 163-180.	1.8	84
60	Comparative study of biomass determinants of 12 poplar (Populus) genotypes in a high-density short-rotation culture. Forest Ecology and Management, 2013, 307, 101-111.	1.4	81
61	Comparison of Fine Root Dynamics in Scots Pine and Pedunculate Oak in Sandy Soil. Plant and Soil, 2005, 276, 33-45.	1.8	80
62	Consensus, uncertainties and challenges for perennial bioenergy crops and land use. GCB Bioenergy, 2018, 10, 150-164.	2.5	80
63	First vs. second rotation of a poplar short rotation coppice: Above-ground biomass productivity and shoot dynamics. Biomass and Bioenergy, 2015, 73, 174-185.	2.9	79
64	Poplar growth and yield in short rotation coppice: model simulations using the process model SECRETS. Biomass and Bioenergy, 2004, 26, 221-227.	2.9	78
65	The likely impact of rising atmospheric CO2 on natural and managed Populus: a literature review. Environmental Pollution, 2001, 115, 335-358.	3.7	77
66	Growth and production of a short rotation coppice culture of poplar I. Clonal differences in leaf characteristics in relation to biomass production. Biomass and Bioenergy, 2004, 27, 9-19.	2.9	77
67	Population dynamics in a 6-year old coppice culture of poplar. I. Clonal differences in stool mortality, shoot dynamics and shoot diameter distribution in relation to biomass production. Biomass and Bioenergy, 2003, 24, 81-95.	2.9	76
68	Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations. Tree Physiology, 2004, 24, 141-154.	1.4	76
69	Genetic Variation of Stomatal Traits and Carbon Isotope Discrimination in Two Hybrid Poplar Families (Populus deltoides â€~S9-2' × P. nigra â€~Ghoy' and P. deltoides â€~S9-2' × P. trichocarpa â€~V24 Botany, 2008, 102, 399-407.	łâ€ ī.⁴). An	nal s ©f
70	Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO2 enrichment. Tree Physiology, 2005, 25, 1399-1408.	1.4	74
71	Financial analysis of the cultivation of poplar and willow for bioenergy. Biomass and Bioenergy, 2012, 43, 52-64.	2.9	73
72	The Challenge of Lignocellulosic Bioenergy in a Water-Limited World. BioScience, 2013, 63, 102-117.	2.2	73

#	Article	IF	CITATIONS
73	Photosynthetic stimulation under longâ€term CO 2 enrichment and fertilization is sustained across a closed Populus canopy profile (EUROFACE). New Phytologist, 2007, 173, 537-549.	3.5	71
74	Response and potential of agroforestry crops under global change. Environmental Pollution, 2010, 158, 1095-1104.	3.7	71
75	Scaling up from the individual tree to the stand level in Scots pine. I. Needle distribution, overall crown and root geometry. Annales Des Sciences Forestià res, 1998, 55, 63-88.	1.1	70
76	Measured sap flow and simulated transpiration from a poplar stand in Flanders (Belgium). Agricultural and Forest Meteorology, 1999, 96, 165-179.	1.9	70
77	Allometric relationships for below- and aboveground biomass of young Scots pines. Forest Ecology and Management, 2004, 203, 177-186.	1.4	69
78	Chronic ozone exposure affects leaf senescence of adult beech trees: a chlorophyll fluorescence approach. Journal of Experimental Botany, 2006, 58, 785-795.	2.4	69
79	Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation. Tree Physiology, 2014, 34, 701-715.	1.4	68
80	Photosynthesis, leaf area and productivity of 5 poplar clones during their establishment year. Annales Des Sciences Forestià res, 1994, 51, 613-625.	1.1	67
81	Modelling the effects of elevated atmospheric CO 2 on crown development, light interception and photosynthesis of poplar in open top chambers. Global Change Biology, 1997, 3, 97-106.	4.2	67
82	Lignification and lignin heterogeneity for various age classes of bamboo (Phyllostachys pubescens) stems. Physiologia Plantarum, 2002, 114, 296-302.	2.6	67
83	Combined effects of climate warming and plant diversity loss on above- and below-ground grassland productivity. Environmental and Experimental Botany, 2007, 60, 95-104.	2.0	66
84	Soil [N] modulates soil C cycling in CO ₂ â€fumigated tree stands: a metaâ€analysis. Plant, Cell and Environment, 2010, 33, 2001-2011.	2.8	65
85	Effects of ozone exposure in open-top chambers on poplar (Populus nigra) and beech (Fagus) Tj ETQq1 1 0.784	314 rgBT 3.7	/Overlock 10
86	How do climate warming and species richness affect CO 2 fluxes in experimental grasslands?. New Phytologist, 2007, 175, 512-522.	3.5	63
87	Water flux estimates from a Belgian Scots pine stand: a comparison of different approaches. Journal of Hydrology, 2003, 270, 230-252.	2.3	62
88	Growth and Physiology of One-year old Poplar (Populus) Under Elevated Atmospheric CO2 Levels. Annals of Botany, 1995, 75, 609-617.	1.4	61
89	Energy budget and greenhouse gas balance evaluation of sustainable coppice systems for electricity production. Biomass and Bioenergy, 2003, 24, 179-197.	2.9	61
90	Growth and production of a short rotation coppice culture of poplar. III. Second rotation results. Biomass and Bioenergy, 2005, 29, 10-21.	2.9	59

#	Article	IF	Citations
91	Proton Transfer Reaction Time-of-Flight Mass Spectrometric (PTR-TOF-MS) determination of volatile organic compounds (VOCs) emitted from a biomass fire developed under stable nocturnal conditions. Atmospheric Environment, 2014, 97, 54-67.	1.9	59
92	Elevated atmospheric CO2 alters wood production, wood quality and wood strength of Scots pine (Pinus sylvestris L) after three years of enrichment. Global Change Biology, 2002, 8, 153-162.	4.2	58
93	Evaluation of leaf traits for indirect selection of high yielding poplar hybrids. Environmental and Experimental Botany, 2007, 61, 103-116.	2.0	58
94	Fluxes of oxidised and reduced nitrogen above a mixed coniferous forest exposed to various nitrogen emission sources. Environmental Pollution, 2007, 149, 31-43.	3.7	57
95	Linear and non-linear functions of volume index to estimate woody biomass in high density young poplar stands. Annales Des Sciences Forestià res, 1997, 54, 335-345.	1.1	54
96	Do climate warming and plant species richness affect potential nitrification, basal respiration and ammonia-oxidizing bacteria in experimental grasslands?. Soil Biology and Biochemistry, 2010, 42, 1944-1951.	4.2	54
97	Clonal variation in stomatal characteristics related to biomass production of 12 poplar (Populus) clones in a short rotation coppice culture. Environmental and Experimental Botany, 2006, 58, 279-286.	2.0	53
98	ANAFORE: A stand-scale process-based forest model that includes wood tissue development and labile carbon storage in trees. Ecological Modelling, 2008, 215, 345-368.	1.2	52
99	Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. Journal of Soils and Sediments, 2013, 13, 176-188.	1.5	52
100	A fractal-based Populus canopy structure model for the calculation of light interception. Forest Ecology and Management, 1994, 69, 97-110.	1.4	51
101	Genetic variation of leaf traits related to productivity in a Populus deltoides × Populus nigra family. Canadian Journal of Forest Research, 2006, 36, 390-400.	0.8	51
102	Stored water use and transpiration in Scots pine: a modeling analysis with ANAFORE. Tree Physiology, 2007, 27, 1671-1685.	1.4	51
103	Exposure to warming and CO2 enrichment promotes greater above-ground biomass, nitrogen, phosphorus and arbuscular mycorrhizal colonization in newly established grasslands. Plant and Soil, 2012, 359, 121-136.	1.8	51
104	Energy and climate benefits of bioelectricity from low-input short rotation woody crops on agricultural land over a two-year rotation. Applied Energy, 2013, 111, 862-870.	5.1	51
105	Net ecosystem production and carbon balance of an SRC poplar plantation during its first rotation. Biomass and Bioenergy, 2013, 56, 412-422.	2.9	51
106	Increased nitrogen-use efficiency of a short-rotation poplar plantation in elevated CO2 concentration. Tree Physiology, 2007, 27, 1153-1163.	1.4	50
107	Bidirectional ammonia exchange above a mixed coniferous forest. Environmental Pollution, 2008, 154, 424-438.	3.7	50
108	Comparative analysis of harvesting machines onÂan operational high-density short rotation woody crop (SRWC) culture: One-process versus two-process harvest operation. Biomass and Bioenergy, 2013, 58, 333-342.	2.9	50

#	Article	IF	CITATIONS
109	Effects of environment and progeny on biomass estimations of five hybrid poplar families grown at three contrasting sites across Europe. Forest Ecology and Management, 2007, 252, 12-23.	1.4	49
110	Entropy increase of fragmented habitats: A sign of human impact?. Ecological Indicators, 2005, 5, 207-212.	2.6	48
111	Stemâ€mediated hydraulic redistribution in large roots on opposing sides of a Douglasâ€fir tree following localized irrigation. New Phytologist, 2009, 184, 932-943.	3.5	48
112	The Potential of the Ni-Resistant TCE-Degrading <i>Pseudomonas putida </i> W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination. International Journal of Phytoremediation, 2015, 17, 40-48.	1.7	48
113	Variations in photosynthetic, anatomical, and enzymatic leaf traits and correlations with growth in recently selected <i>Populus</i> hybrids. Canadian Journal of Forest Research, 1987, 17, 273-283.	0.8	47
114	Carbon sequestration following afforestation of agricultural soils: comparing oak/beech forest to short-rotation poplar coppice combining a process and a carbon accounting model. Global Change Biology, 2004, 10, 1482-1491.	4.2	46
115	Challenges in elevated CO2 experiments on forests. Trends in Plant Science, 2010, 15, 5-10.	4.3	46
116	Leaf allometry in young poplar stands: Reliability of leaf area index estimation, site and clone effects. Biomass and Bioenergy, 1993, 4, 315-321.	2.9	45
117	Do aboveâ€ground growth dynamics of poplar change with time under CO 2 enrichment?. New Phytologist, 2003, 160, 305-318.	3.5	45
118	Gross primary production is stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure. Global Change Biology, 2005, 11, 644-656.	4.2	45
119	Coppicing shifts CO ₂ stimulation of poplar productivity to aboveâ€ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment. New Phytologist, 2009, 182, 331-346.	3.5	45
120	Future climate alleviates stress impact on grassland productivity through altered antioxidant capacity. Environmental and Experimental Botany, 2014, 99, 150-158.	2.0	45
121	Short-rotation coppiced vs non-coppiced poplar: A comparative study at two different field sites. Biomass and Bioenergy, 1996, 11, 139-150.	2.9	44
122	Spatial distribution of leaf morphological and physiological characteristics in relation to local radiation regime within the canopies of 3-year-old Populus clones in coppice culture. Tree Physiology, 2002, 22, 1277-1288.	1.4	44
123	Three years of free-air CO2 enrichment (POPFACE) only slightly affect profiles of light and leaf characteristics in closed canopies of Populus. Global Change Biology, 2003, 9, 1022-1037.	4.2	44
124	N2O fluxes of a bio-energy poplar plantation during a two years rotation period. GCB Bioenergy, 2013, 5, 536-547.	2. 5	44
125	Vulnerability to droughtâ€induced cavitation in poplars: synthesis and future opportunities. Plant, Cell and Environment, 2015, 38, 1233-1251.	2.8	44
126	An integrated decision support framework for the prediction and evaluation of efficiency, environmental impact and total social cost of domestic and international forestry projects for greenhouse gas mitigation: description and case studies. Forest Ecology and Management, 2005, 207, 245-262.	1.4	43

#	Article	IF	CITATIONS
127	Variation of specific leaf area and upscaling to leaf area index in mature Scots pine. Trees - Structure and Function, 2006, 20, 304-310.	0.9	43
128	Impact of feedstock, land use change, and soil organic carbon on energy and greenhouse gas performance of biomass cogeneration technologies. Applied Energy, 2015, 154, 122-130.	5.1	43
129	Biodiversity in short-rotation coppice. Renewable and Sustainable Energy Reviews, 2019, 111, 34-43.	8.2	43
130	Increased leaf area expansion of hybrid poplar in elevated CO2. From controlled environments to open-top chambers and to FACE. Environmental Pollution, 2001, 115, 463-472.	3.7	42
131	Elevated CO2 concentration, fertilization and their interaction: growth stimulation in a short-rotation poplar coppice (EUROFACE). Tree Physiology, 2005, 25, 179-189.	1.4	42
132	Plasticity of growth and sylleptic branchiness in two poplar families grown at three sites across Europe. Tree Physiology, 2006, 26, 935-946.	1.4	41
133	Impacts and uncertainties of upscaling of remote-sensing data validation for a semi-arid woodland. Journal of Arid Environments, 2008, 72, 1490-1505.	1.2	41
134	Leaf area index development in temperate oak and beech forests is driven by stand characteristics and weather conditions. Trees - Structure and Function, 2011, 25, 935-946.	0.9	41
135	Calibration and validation of an empirical approach to model soil CO2 efflux in a deciduous forest. Biogeochemistry, 2005, 73, 209-230.	1.7	40
136	Scots pine root distribution derived from radial sap flow patterns in stems of large leaning trees. Plant and Soil, 2008, 305, 61-75.	1.8	40
137	Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought?. Plant and Soil, 2008, 308, 119-130.	1.8	40
138	Evapotranspiration of a high-density poplar stand in comparison with a reference grass cover in the Czech–Moravian Highlands. Agricultural and Forest Meteorology, 2013, 181, 43-60.	1.9	40
139	Financial Analysis of the Cultivation of Short Rotation Woody Crops for Bioenergy in Belgium: Barriers and Opportunities. Bioenergy Research, 2013, 6, 336-350.	2.2	40
140	Plantâ€associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a fieldâ€related experiment. Microbial Biotechnology, 2013, 6, 288-299.	2.0	40
141	Below-ground carbon inputs contribute more than above-ground inputs to soil carbon accrual in a bioenergy poplar plantation. Plant and Soil, 2019, 434, 363-378.	1.8	40
142	Genetic Variation of the Bud and Leaf Phenology of Seventeen Poplar Clones in a Short Rotation Coppice Culture. Plant Biology, 2004, 6, 38-46.	1.8	39
143	Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture. Plant and Soil, 2013, 373, 269-283.	1.8	39
144	Operational short rotation woody crop plantations: Manual or mechanised harvesting?. Biomass and Bioenergy, 2015, 72, 8-18.	2.9	39

#	Article	IF	Citations
145	Mechanised harvesting of short-rotation coppices. Renewable and Sustainable Energy Reviews, 2017, 76, 90-104.	8.2	39
146	Effects of ozone exposure on growth and photosynthesis of beech seedlings (Fagus sylvatica). New Phytologist, 2000, 146, 271-280.	3.5	38
147	End-of-season effects of elevated temperature on ecophysiological processes of grassland species at different species richness levels. Environmental and Experimental Botany, 2006, 56, 245-254.	2.0	38
148	Biometric and eddy covariance-based assessment of decadal carbon sequestration of a temperate Scots pine forest. Agricultural and Forest Meteorology, 2013, 174-175, 135-143.	1.9	38
149	Effects of Elevated Atmospheric CO 2 on Growth, Biomass Production and Nitrogen Allocation of Two Populus Clones. Journal of Biogeography, 1995, 22, 261.	1.4	37
150	Growth performance of Populus exposed to "Free Air Carbon dioxide Enrichment" during the first growing season in the POPFACE experiment. Annals of Forest Science, 2001, 58, 819-828.	0.8	37
151	TRAP: a modelling approach to below-ground carbon allocation in temperate forests. Plant and Soil, 2001, 229, 281-293.	1.8	37
152	Elevated atmospheric CO2 in open top chambers increases net nitrification and potential denitrification. Global Change Biology, 2002, 8, 590-598.	4.2	37
153	Underlying effects of spatial aggregation (clumping) in relationships between plant diversity and resource uptake. Oikos, 2006, 113, 269-278.	1.2	37
154	Importance of crown architecture for leaf area index of different Populus genotypes in a high-density plantation. Tree Physiology, 2012, 32, 1214-1226.	1.4	37
155	Clonal variability in biomass production and conversion efficiency of poplar during the establishment year of a short rotation coppice plantation. Biomass and Bioenergy, 1998, 15, 391-398.	2.9	36
156	Stem injection of Populus nigra with EDU to study ozone effects under field conditions. Environmental Pollution, 2001, 111, 199-208.	3.7	36
157	A comparative analysis of the carbon intensity of biofuels caused by land use changes. GCB Bioenergy, 2012, 4, 392-407.	2.5	36
158	Soil carbon and belowground carbon balance of a shortâ€rotation coppice: assessments from three different approaches. GCB Bioenergy, 2017, 9, 299-313.	2.5	36
159	Variability in Populus leaf anatomy and morphology in relation to canopy position, biomass production, and varietal taxon. Annals of Forest Science, 2007, 64, 521-532.	0.8	35
160	Genomic regions involved in productivity of two interspecific poplar families in Europe. 1. Stem height, circumference and volume. Tree Genetics and Genomes, 2009, 5, 147-164.	0.6	35
161	Above- and Below-ground Production of Young Scots Pine (Pinus sylvestris L.) Trees after Three Years of Growth in the Field under Elevated CO2. Annals of Botany, 2000, 85, 789-798.	1.4	34
162	Simulated soil CO2 efflux and net ecosystem exchange in a 70-year-old Belgian Scots pine stand using the process model SECRETS. Annals of Forest Science, 2001, 58, 31-46.	0.8	34

#	Article	IF	Citations
163	Crown architecture of Populus spp. is differentially modified by free-air CO2 enrichment (POPFACE). New Phytologist, 2002, 153, 91-99.	3.5	34
164	Effects of elevated CO2 concentration on photosynthesis, respiration and carbohydrate status of coppice Populus hybrids. Physiologia Plantarum, 1997, 100, 933-939.	2.6	33
165	Driving forces for ammonia fluxes over mixed forest subjected to high deposition loads. Atmospheric Environment, 2005, 39, 5013-5024.	1.9	33
166	Footprint-adjusted net ecosystem CO2 exchange and carbon balance components of a temperate forest. Agricultural and Forest Meteorology, 2006, 139, 344-360.	1.9	33
167	Within-canopy and ozone fumigation effects on Â13C and Â18O in adult beech (Fagus sylvatica) trees: relation to meteorological and gas exchange parameters. Tree Physiology, 2009, 29, 1349-1365.	1.4	33
168	Does an extreme drought event alter the response of grassland communities to a changing climate?. Environmental and Experimental Botany, 2011, 70, 151-157.	2.0	33
169	Changes in belowground biomass after coppice in two Populus genotypes. Forest Ecology and Management, 2015, 337, 1-10.	1.4	33
170	The effect of a dry spring on seasonal carbon allocation and vegetation dynamics in a poplar bioenergy plantation. GCB Bioenergy, 2014, 6, 473-487.	2.5	31
171	Simultaneous leaf- and ecosystem-level fluxes of volatile organic compounds from a poplar-based SRC plantation. Agricultural and Forest Meteorology, 2014, 187, 22-35.	1.9	31
172	Environmental controls on ozone fluxes in a poplar plantation in Western Europe. Environmental Pollution, 2014, 184, 201-210.	3.7	31
173	Biophysical drivers of the carbon dioxide, water vapor, and energy exchanges of a short-rotation poplar coppice. Agricultural and Forest Meteorology, 2015, 209-210, 22-35.	1.9	31
174	Effects of plant canopy structure on light interception and photosynthesis. Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52, 115-123.	1.1	30
175	Transpiration of Scots pine in Flanders growing on soil with irregular substratum. Forest Ecology and Management, 2007, 243, 1-9.	1.4	30
176	Thermal adaptation of net ecosystem exchange. Biogeosciences, 2011, 8, 1453-1463.	1.3	30
177	Genetic variation in aspects of leaf growth of Populusclones, using the leaf plastochron index. Canadian Journal of Forest Research, 1988, 18, 1069-1077.	0.8	29
178	Relationships among productivity determinants in two hybrid poplar families grown during three years at two contrasting sites. Tree Physiology, 2009, 29, 975-987.	1.4	29
179	Combined effects of warming and elevated CO2 on the impact of drought in grassland species. Plant and Soil, 2013, 369, 497-507.	1.8	29
180	Rapid leaf development drives the seasonal pattern of volatile organic compound (VOC) fluxes in a †coppiced' bioenergy poplar plantation. Plant, Cell and Environment, 2016, 39, 539-555.	2.8	29

#	Article	IF	Citations
181	Above- and below-ground biomass, surface and volume, and stored water in a mature Scots pine stand. European Journal of Forest Research, 2015, 134, 61-74.	1.1	28
182	Water use of a multigenotype poplar shortâ€rotation coppice from tree to stand scale. GCB Bioenergy, 2017, 9, 370-384.	2.5	28
183	Model analysis of the effects of atmospheric drivers on storage water use in Scots pine. Biogeosciences, 2007, 4, 657-671.	1.3	27
184	No signs of thermal acclimation of heterotrophic respiration from peat soils exposed to different water levels. Soil Biology and Biochemistry, 2009, 41, 2014-2016.	4.2	27
185	Diversity–function relationship of ammonia-oxidizing bacteria in soils among functional groups of grassland species under climate warming. Applied Soil Ecology, 2010, 44, 15-23.	2.1	27
186	Carbon and water vapor fluxes over four forests in two contrasting climatic zones. Agricultural and Forest Meteorology, 2013, 180, 211-224.	1.9	27
187	Contribution of volatile organic compound fluxes to the ecosystem carbon budget of a poplar shortâ€rotation plantation. GCB Bioenergy, 2018, 10, 405-414.	2.5	27
188	Under-story contributions to stand level GPP using the process model SECRETS. Agricultural and Forest Meteorology, 2006, 139, 94-104.	1.9	26
189	Influence of stand, site and meteorological variables on the maximum leaf area index of beech, oak and Scots pine. European Journal of Forest Research, 2012, 131, 283-295.	1.1	26
190	No Detectable Maternal Effects of Elevated CO2 on Arabidopsis thaliana Over 15 Generations. PLoS ONE, 2009, 4, e6035.	1.1	26
191	Measurement of gap fraction of fractal generated canopies using digitalized image analysis. Agricultural and Forest Meteorology, 1993, 65, 245-259.	1.9	25
192	Clonal differences in the response of dark and light reactions of photosynthesis to elevated atmospheric CO2 in poplar. Photosynthetica, 1997, 33, 51-61.	0.9	25
193	Effects of arbuscular mycorrhizal fungi on grassland productivity are altered by future climate and below-ground resource availability. Environmental and Experimental Botany, 2012, 81, 62-71.	2.0	25
194	Soil CO ₂ efflux rates in different tropical vegetation types in French Guiana. Annales Des Sciences Forestià res, 1998, 55, 671-680.	1.1	25
195	Effects of Season, Needle Age, and Elevated Atmospheric CO ₂ on Chlorophyll Fluorescence Parameters and Needle Nitrogen Concentration in Scots Pine (Pinus sylvestris). Photosynthetica, 2000, 38, 13-21.	0.9	24
196	Nitrogen biogeochemistry of a mature Scots pine forest subjected to high nitrogen loads. Biogeochemistry, 2008, 91, 201-222.	1.7	24
197	Estimating the ecotone width in patchy ecotones using a sigmoid wave approach. Ecological Informatics, 2008, 3, 97-104.	2.3	24
198	Insights into ozone deposition patterns from decade-long ozone flux measurements over a mixed temperate forest. Journal of Environmental Monitoring, 2012, 14, 1684.	2.1	24

#	Article	IF	CITATIONS
199	Automation of soil flux chamber measurements: potentials and pitfalls. Biogeosciences, 2016, 13, 1949-1966.	1.3	24
200	<scp>CO</scp> ₂ uptake is offset by <scp>CH</scp> ₄ and N ₂ O emissions in a poplar shortâ€rotation coppice. GCB Bioenergy, 2016, 8, 524-538.	2.5	24
201	Recent past (1979–2014) and future (2070–2099) isoprene fluxes over Europe simulated with the MEGAN–MOHYCAN model. Biogeosciences, 2018, 15, 3673-3690.	1.3	24
202	Growth and Physiology. , 2010, , 39-63.		24
203	Carbon budget of Pinus sylvestris saplings after four years of exposure to elevated atmospheric carbon dioxide concentration. Tree Physiology, 2005, 25, 325-337.	1.4	23
204	An optimized fine root sampling methodology balancing accuracy and time investment. Plant and Soil, 2013, 366, 351-361.	1.8	23
205	Net CO2Exchange Rate and Shoot Growth of Young Poplar (Populus) Clones. Journal of Experimental Botany, 1983, 34, 866-870.	2.4	22
206	Growth and production of a short rotation coppice culture of poplar. II. Clonal and year-to-year differences in leaf and petiole characteristics and stand leaf area index. Biomass and Bioenergy, 2005, 28, 536-547.	2.9	22
207	Grassland species will not necessarily benefit from future elevated air temperatures: a chlorophyll fluorescence approach to study autumn physiology. Physiologia Plantarum, 2005, 125, 52-63.	2.6	22
208	Physiological responses to cumulative ozone uptake in two white clover (Trifolium repens L. cv.) Tj ETQq0 0 0 rgl 169-179.	BT /Overlo 2.0	ck 10 Tf 50 38 22
209	Modelling Ozone Effects on Adult Beech Trees through Simulation of Defence, Damage, and Repair Costs: Implementation of the CASIROZ Ozone Model in the ANAFORE Forest Model. Plant Biology, 2007, 9, 320-330.	1.8	22
210	Crown structure and leaf area of the understorey species Prunus serotina. Trees - Structure and Function, 2009, 23, 391-399.	0.9	21
211	Fragmentation in the Legal Amazon, Brazil: Can landscape metrics indicate agricultural policy differences?. Ecological Indicators, 2011, 11, 1467-1471.	2.6	21
212	Population dynamics in a 6-year-old coppice culture of poplar. Forest Ecology and Management, 2005, 218, 115-128.	1.4	20
213	Is the ranking of poplar genotypes for leaf carbon isotope discrimination stable across sites and years in two different full-sib families?. Annals of Forest Science, 2011, 68, 1265.	0.8	20
214	Soil CO2 efflux in a bioenergy plantation with fast-growing Populus trees – influence of former land use, inter-row spacing and genotype. Plant and Soil, 2013, 369, 631-644.	1.8	20
215	Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level. Scientific Reports, 2016, 6, 32676.	1.6	20
216	UV-B and PAR in single and mixed canopies grown under different UV-B exclusions in the field. Plant Ecology, 2001, 154, 123-133.	0.7	19

#	Article	IF	CITATIONS
217	Leaf area and biomass of Rhododendron understory in a stand of Scots pine. Forest Ecology and Management, 2004, 187, 235-246.	1.4	19
218	Investigating the relationship between groundâ€measured LAI and vegetation indices in an alpine meadow, northâ€west China. International Journal of Remote Sensing, 2005, 26, 4471-4484.	1.3	18
219	Carbon isotope compositions (δ ¹³ C) of leaf, wood and holocellulose differ among genotypes of poplar and between previous land uses in a shortâ€rotation biomass plantation. Plant, Cell and Environment, 2015, 38, 144-156.	2.8	18
220	Genotypic variation in transpiration of coppiced poplar during the third rotation of a shortâ€rotation bioâ€energy culture. GCB Bioenergy, 2018, 10, 592-607.	2.5	18
221	First vs. second rotation of a poplar short rotation coppice: leaf area development, light interception and radiation use efficiency. IForest, 2015, 8, 565-573.	0.5	18
222	Effects of Elevated Temperature on Growth and Gas Exchange in Dominant Plant Species from Maowusu Sandland, China. Photosynthetica, 2003, 41, 565-569.	0.9	17
223	Allometric relationships for needle area of different needle age classesin young Scots pines: needles, branches and trees. Forestry, 2004, 77, 369-382.	1.2	17
224	Reinitialised versus continuous regional climate simulations using ALARO-0 coupled to the land surface model SURFEXv5. Geoscientific Model Development, 2017, 10, 223-238.	1.3	17
225	Water requirements of short rotation poplar coppice: Experimental and modelling analyses across Europe. Agricultural and Forest Meteorology, 2018, 250-251, 343-360.	1.9	17
226	Scaling-Up Carbon Fluxes from Leaves to Stands in a Patchy Coniferous / Deciduous Forest. Forestry Sciences, 1997, , 263-272.	0.4	17
227	Stomatal response of hybrid poplar to incident light, sudden darkening and leaf excision. Physiologia Plantarum, 1989, 75, 174-182.	2.6	16
228	Growth, photosynthesis and ozone uptake of young beech (Fagus sylvatica L.) in response to different ozone exposures. Trees - Structure and Function, 2001, 15, 75-82.	0.9	16
229	Effects of climate warming and species richness on photochemistry of grasslands. Physiologia Plantarum, 2007, 131, 070621163516001-???.	2.6	16
230	Bio-Energy Retains Its Mitigation Potential Under Elevated CO2. PLoS ONE, 2010, 5, e11648.	1.1	16
231	Stem respiration of Populus species in the third year of free-air CO2 enrichment. Physiologia Plantarum, 2003, 117, 500-507.	2.6	15
232	Carbon sequestration and environmental effects of afforestation with Pinus radiata D. Don in the Western Cape, South Africa. Climatic Change, 2007, 83, 323-355.	1.7	15
233	Multivariate analysis of physiological parameters reveals a consistent O ₃ response pattern in leaves of adult European beech (<i>Fagus sylvatica</i>). New Phytologist, 2012, 196, 162-172.	3.5	15
234	Ozone effects on yield quality of spring oilseed rape and broccoli. Atmospheric Environment, 2012, 47, 76-83.	1.9	15

#	Article	IF	Citations
235	Effects of supplemental irradiation with HID lamps, and NFT gutter size on gas exchange, plant morphology and yield of strawberry plants. Scientia Horticulturae, 1986, 28, 71-83.	1.7	14
236	A simple method to determine leaf angles of grass species. Journal of Experimental Botany, 2000, 51, 1467-1470.	2.4	14
237	Reduced UV-B in greenhouses decreases white clover response to enhance CO2. Environmental and Experimental Botany, 2001, 46, 109-117.	2.0	14
238	Effects of climate warming and declining species richness in grassland model ecosystems: acclimation of CO ₂ fluxes. Biogeosciences, 2007, 4, 27-36.	1.3	14
239	The observer effect in plant science. New Phytologist, 2008, 177, 579-583.	3.5	14
240	The influence of forest definition on landscape fragmentation assessment in Rondônia, Brazil. Ecological Indicators, 2009, 9, 1163-1168.	2.6	14
241	Ozone dose–response relationships for spring oilseed rape and broccoli. Atmospheric Environment, 2011, 45, 1759-1765.	1.9	14
242	Spatial Variability of Leaf Area Index in Homogeneous Forests Relates to Local Variation in Tree Characteristics. Forest Science, 2012, 58, 633-640.	0.5	14
243	Short- versus Long-Term Effects of Elevated CO ₂ on Night-Time Respiration of Needles of Scots Pine (Pinus sylvestris L.). Photosynthetica, 2000, 38, 57-67.	0.9	13
244	Plasticity of growth and biomass production of an intraspecific Populus alba family grown at three sites across Europe during three growing seasons. Canadian Journal of Forest Research, 2010, 40, 1887-1903.	0.8	13
245	Neglected carbon pools and fluxes in the soil balance of short-rotation woody biomass crops. Biomass and Bioenergy, 2015, 73, 62-66.	2.9	13
246	Genomic regions involved in productivity of two interspecific poplar families in Europe. 2. Biomass production and its relationships with tree architecture and phenology. Tree Genetics and Genomes, 2010, 6, 533-554.	0.6	12
247	Productivity of mechanized whip harvesting with the Stemster MkIII in a short-rotation coppice established on farmland. Biomass and Bioenergy, 2018, 108, 323-329.	2.9	12
248	Assessing Ecosystem Isoprene Emissions by Hyperspectral Remote Sensing. Remote Sensing, 2018, 10, 1086.	1.8	12
249	Current focuses in woody plant water relations and drought resistance. Annales Des Sciences Forestià res, 1989, 46, 317s-324s.	1.1	12
250	Is There a Light Regime Determined Tree Ideotype?. Journal of Theoretical Biology, 1994, 169, 153-161.	0.8	11
251	An inventory of tree and stand growth models with potential application in short-rotation forestry. Biomass and Bioenergy, 1996, 11 , 95-107.	2.9	11
252	How is phenology of grassland species influenced by climate warming across a range of species richness?. Community Ecology, 2008, 9, 33-42.	0.5	11

#	Article	IF	Citations
253	A comparison of photosynthesis-dependent stomatal models using twig cuvette field data for adult beech (Fagus sylvatica L.). Agricultural and Forest Meteorology, 2010, 150, 531-540.	1.9	11
254	Variance decomposition of predictions of stem biomass increment for European beech: Contribution of selected sources of uncertainty. Forest Ecology and Management, 2016, 361, 46-55.	1.4	11
255	Genotypic differences in biomass production during three rotations of short-rotation coppice. Biomass and Bioenergy, 2018, 119, 198-205.	2.9	11
256	Growth of a poplar short rotation coppice under elevated atmospheric CO2 concentrations (EUROFACE) depends on fertilization and species. Annals of Forest Science, 2004, 61, 299-307.	0.8	11
257	Using the process-based stand model ANAFORE including Bayesian optimisation to predict wood quality and quantity and their uncertainty in Slovenian beech. Silva Fennica, 2009, 43, .	0.5	10
258	A comparison of different methods for assessing leaf area index in four canopy types. Central European Forestry Journal, 2019, 65, 67-80.	0.2	10
259	A comparative study of four approaches to assess phenology of Populus in a short-rotation coppice culture. IForest, 2016, 9, 682-689.	0.5	10
260	Significant overestimation of needle surface area estimates based on needle dimensions in Scots pine (Pinus sylvestris). Canadian Journal of Botany, 2002, 80, 927-932.	1.2	9
261	Greater impact of extreme drought on photosynthesis of grasslands exposed to a warmer climate in spite of acclimation. Physiologia Plantarum, 2009, 136, 57-72.	2.6	9
262	A comparison of two stomatal conductance models for ozone flux modelling using data from two Brassica species. Environmental Pollution, 2010, 158, 3251-3260.	3.7	9
263	Photosynthesis and crop growth of spring oilseed rape and broccoli under elevated tropospheric ozone. Environmental and Experimental Botany, 2012, 82, 28-36.	2.0	9
264	Petiole and leaf traits of poplar in relation to parentage and biomass yield. Forest Ecology and Management, 2016, 362, 1-9.	1.4	9
265	The wood productivity of two poplar clones (Populus trichocarpa \tilde{A} — Populus deltoides) as affected by stocking and age. Biomass and Bioenergy, 1991, 1, 233-239.	2.9	8
266	The Euler Number as an Index of Spatial Integrity of Landscapes: Evaluation and Proposed Improvement. Environmental Management, 2002, 29, 673-682.	1.2	8
267	Stem CO ₂ efflux of a Populus nigra stand: effects of elevated CO ₂ , fertilization, and shoot size. Biologia Plantarum, 2008, 52, 299-306.	1.9	8
268	The 2013 reforms of the Flemish renewable electricity support: Missed opportunities. Renewable Energy, 2015, 83, 905-917.	4.3	8
269	Within-canopy variation in needle morphology and anatomy of vascular tissues in a sparse Scots pine forest. Trees - Structure and Function, 2015, 29, 1447-1457.	0.9	8
270	Can the agricultural AquaCrop model simulate water use and yield of a poplar shortâ€rotation coppice?. GCB Bioenergy, 2017, 9, 1151-1164.	2.5	8

#	Article	lF	CITATIONS
271	Global change and agro-forest ecosystems: Adaptation and mitigation in a FACE experiment on a poplar plantation. Plant Biosystems, 2005, 139, 255-264.	0.8	7
272	Altered response to nitrogen supply of mixed grassland communities in a future climate: a controlled environment microcosm study. Plant and Soil, 2011, 345, 375-385.	1.8	7
273	Root Function: In Situ Studies Through Sap Flow Research. , 2012, , 267-290.		7
274	Relationship between soil chemical composition and potential fuel quality of biomass from poplar short rotation coppices in Portugal and Belgium. Biomass and Bioenergy, 2017, 105, 66-72.	2.9	7
275	Greenhouse gas budget of a poplar bioenergy plantation in Belgium: CO2uptake outweighs CH4and N2O emissions. GCB Bioenergy, 2019, 11, 1435-1443.	2.5	7
276	Weather, pollution and biotic factors drive net forest - atmosphere exchange of CO2 at different temporal scales in a temperate-zone mixed forest. Agricultural and Forest Meteorology, 2020, 291, 108059.	1.9	7
277	Outburst of senescence-related VOC emissions from a bioenergy poplar plantation. Plant Physiology and Biochemistry, 2020, 148, 324-332.	2.8	7
278	Decreased Ultraviolet-B Radiation Alters the Vertical Biomass Distribution in Cocksfoot. Biologia Plantarum, 2001, 44, 385-389.	1.9	6
279	Validation of the sigmoid wave curve fitting algorithm on a forest-tundra ecotone in the Northwest Territories, Canada. Ecological Informatics, 2009, 4, 1-7.	2.3	6
280	Does the stress tolerance of mixed grassland communities change in a future climate? A test with heavy metal stress (zinc pollution). Environmental Pollution, 2011, 159, 3294-3301.	3.7	6
281	Photosynthetic acclimation to elevated CO2 in poplar grown in glasshouse cabinets or in open top chambers depends on duration of exposure. Journal of Experimental Botany, 1997, 48, 1681-1689.	2.4	6
282	Comparative study of photosynthesis, transpiration, diffusion resistances and water-use efficiency of two azalea cultivars. Scientia Horticulturae, 1980, 13, 283-288.	1.7	5
283	Variations among physiological, morphological and biochemical characteristics of evergreen azalea (Rhododendron simsii Planch.) cultivars. Scientia Horticulturae, 1984, 22, 147-155.	1.7	5
284	Land-cover change: quantification metrics for perforation using 2-D gap features. Acta Biotheoretica, 2001, 49, 161-169.	0.7	5
285	Scaling from stand to landscape scale of climate change mitigation by afforestation and forest management: a modeling approach. Climatic Change, 2008, 86, 397-424.	1.7	5
286	Habitat reporting of a heathland site: Classification probabilities as additional information, a case study. Ecological Informatics, 2010, 5, 248-255.	2.3	5
287	Do interactions with neighbours modify the above-ground productivity response to drought? A test with two grassland species. Environmental and Experimental Botany, 2014, 105, 18-24.	2.0	5
288	Potential and limitations of local tree ring records in estimating a priori the growth performance of short-rotation coppice plantations. Biomass and Bioenergy, 2016, 92, 12-19.	2.9	5

#	Article	IF	CITATIONS
289	Nutrients and energy in proleptic branches and leaves of poplar under a short-rotation coppice. Biomass and Bioenergy, 2016, 85, 271-277.	2.9	5
290	The involvement of the phytohormone ethylene in the adaptation of Arabidopsis rosettes to enhanced atmospheric carbon dioxide concentrations. Environmental and Experimental Botany, 2020, 177, 104128.	2.0	5
291	Crown architecture in relation to productivity of Populus clones in the Pacific Northwest, U.S.A. Annales Des Sciences Forestià res, 1989, 46, 199s-201s.	1.1	5
292	A Fast, Low Cost and Low Power Requiring Device for Improving Closed Loop CO2Measuring Systems. Journal of Experimental Botany, 1986, 37, 1234-1244.	2.4	4
293	Tree water dynamics non-destructively assessed through sap flow measurements and potential evapotranspiration. Biologia Plantarum, 2010, 54, 366-368.	1.9	4
294	ORCHIDEE-SRC v1.0: an extension of the land surface model ORCHIDEE for simulating short rotation coppice poplar plantations. Geoscientific Model Development, 2015, 8, $1461-1471$.	1.3	4
295	Identifying the best plant water status indicator for bioâ€energy poplar genotypes. GCB Bioenergy, 2020, 12, 426-444.	2.5	4
296	Fine Root and Rhizosphere Respiration of Young Scots Pine Seedlings under Elevated and Ambient CO2. Forestry Sciences, 1997, , 187-192.	0.4	3
297	Stomatal Density and Length for Breeding of Evergreen Azaleas (Rhododendron simsii Planch.). Plant Breeding, 1987, 99, 340-343.	1.0	2
298	Replies to the comments by F. Hupet, M. Vanclooster on †Water flux estimates from a Belgian Scots pine stand: a comparison of different approaches'. Journal of Hydrology, 2004, 291, 154-157.	2.3	2
299	Corrigendum to "Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land―[Agric. For. Meteorol. 169 (2012) 100–110]. Agricultural and Forest Meteorology, 2013, 169, 211.	1.9	2
300	Effects of elevatedCO2 concentration on photosynthesis, respiration and carbohydrate status of coppice Populus hybrids. Physiologia Plantarum, 1997, 100, 933-939.	2.6	2
301	Measurements of Eddy Covariance CO2 Fluxes above a Forest Canopy in the Campine Region (Belgium). Forestry Sciences, 1997, , 337-341.	0.4	2
302	Ribulose-1, 5-bisphosphate carboxylase activity, chlorophyll and protein concentrations in differentPopulus clones. Biologia Plantarum, 1982, 24, 57-62.	1.9	1
303	Antitranspirant effects on transpiration, net CO2 exchange rate and water-use efficiency of azalea. Scientia Horticulturae, 1983, 19, 125-131.	1.7	1
304	Carbon Balance Gradient in European Forests: Should We Doubt 'Surprising' Results? A Reply to Piovesan & Adams. Journal of Vegetation Science, 2001, 12, 145.	1.1	1
305	Validating the MODIS LAI product by scaling up LAI measurements at a VALERI alpine meadow site in China. , 2007, , .		1
306	Modelling the carbon sequestration of a mixed, uneven-aged, managed forest using the process model SECRETS, 2003, , 143-155.		1

#	Article	IF	CITATIONS
307	Critical Tropospheric Ozone Levels: Preliminary Results of Ozone Fumigation of Trees. Forestry Sciences, 1997, , 135-139.	0.4	1
308	Towards a quantification of ecological theory: the importance of multivariate analysis and of an accurate diversity measurement. Acta Biotheoretica, 2002, 50, 57-61.	0.7	0
309	Impact of tropospheric ozone on food and feed quality of Brassica species. Comparative Biochemistry and Physiology Part A, Molecular & Dr. Integrative Physiology, 2009, 153, S228.	0.8	0
310	Jan Čermák's lifetime contribution to tree water relations. Tree Physiology, 2022, 42, 1517-1526.	1.4	0