
Joao Carlos Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9466694/publications.pdf Version: 2024-02-01

LOAD CARLOS SILVA

#	Article	IF	CITATIONS
1	Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 57-66.	4.3	164
2	Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Materials Science and Engineering C, 2019, 99, 479-490.	7.3	89
3	Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Materials Science and Engineering C, 2020, 107, 110291.	7.3	86
4	Extraction of Collagen/Gelatin from the Marine Demosponge <i>Chondrosia reniformis</i> (Nardo,) Tj ETQq0 0 (Chemistry Research, 2016, 55, 6922-6930.) rgBT /Ov 3.7	erlock 10 Tf 5 59
5	Polyaniline-polycaprolactone blended nanofibers for neural cell culture. European Polymer Journal, 2019, 117, 28-37.	5.4	58
6	Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patientâ€ŧailored bone tissue engineering approach. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2153-2166.	3.4	52
7	Cultured cellâ€derived extracellular matrices to enhance the osteogenic differentiation and angiogenic properties of human mesenchymal stem/stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1544-1558.	2.7	45
8	Compositional and structural analysis of glycosaminoglycans in cell-derived extracellular matrices. Glycoconjugate Journal, 2019, 36, 141-154.	2.7	38
9	Chondrogenic differentiation of mesenchymal stem/stromal cells on 3D porous poly (ε-caprolactone) scaffolds: Effects of material alkaline treatment and chondroitin sulfate supplementation. Journal of Bioscience and Bioengineering, 2020, 129, 756-764.	2.2	27
10	3D Bioprinting of Novel κ-Carrageenan Bioinks: An Algae-Derived Polysaccharide. Bioengineering, 2022, 9, 109.	3.5	23
11	Piezoelectric Electrospun Fibrous Scaffolds for Bone, Articular Cartilage and Osteochondral Tissue Engineering. International Journal of Molecular Sciences, 2022, 23, 2907.	4.1	21
12	Polybenzimidazole nanofibers for neural stem cell culture. Materials Today Chemistry, 2019, 14, 100185.	3.5	20
13	Loss and rescue of osteocalcin and osteopontin modulate osteogenic and angiogenic features of mesenchymal stem/stromal cells. Journal of Cellular Physiology, 2020, 235, 7496-7515.	4.1	18
14	A Multimodal Stimulation Cell Culture Bioreactor for Tissue Engineering: A Numerical Modelling Approach. Polymers, 2020, 12, 940.	4.5	17
15	The effect of electrospun scaffolds on the glycosaminoglycan profile of differentiating neural stem cells. Biochimie, 2021, 182, 61-72.	2.6	12
16	PEDOT:PSS-Coated Polybenzimidazole Electroconductive Nanofibers for Biomedical Applications. Polymers, 2021, 13, 2786.	4.5	12
17	Effects of Different Fibre Alignments and Bioactive Coatings on Mesenchymal Stem/Stromal Cell Adhesion and Proliferation in Poly (É>caprolactone) Scaffolds towards Cartilage Repair. Procedia Manufacturing, 2017, 12, 132-140.	1.9	10
18	Glycosaminoglycan remodeling during chondrogenic differentiation of human bone marrowâ^'/synovial-derived mesenchymal stem/stromal cells under normoxia and hypoxia. Glycoconjugate Journal, 2020, 37, 345-360.	2.7	10

#	Article	IF	CITATIONS
19	Extruded Bioreactor Perfusion Culture Supports the Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells in 3D Porous Poly(É›â€Caprolactone) Scaffolds. Biotechnology Journal, 2020, 15, e1900078.	3.5	7
20	Effects of glycosaminoglycan supplementation in the chondrogenic differentiation of bone marrow- and synovial- derived mesenchymal stem/stromal cells on 3D-extruded poly (ε-caprolactone) scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 207-222.	3.4	6
21	Additive Manufactured Poly(ε-caprolactone)-graphene Scaffolds: Lamellar Crystal Orientation, Mechanical Properties and Biological Performance. Polymers, 2022, 14, 1669.	4.5	5
22	Corncob Cellulose Scaffolds: A New Sustainable Temporary Implant for Cartilage Replacement. Journal of Functional Biomaterials, 2022, 13, 63.	4.4	4
23	Translational Research and Innovation in Human and Health Science. Annals of Medicine, 2018, 50, S10-S170.	3.8	3
24	Glycosaminoglycan disaccharide compositional analysis of cell-derived extracellular matrices using liquid chromatography-tandem mass spectrometry. Methods in Cell Biology, 2020, 156, 85-106.	1.1	1
25	Cell Culture Bioreactor Manufacturing, from Material Selection to Numerical Models. , 2022, 8, .		0
26	Development of 3D-Printed Scaffolds with Mathematically Defined Curvature for Osteochondral Defect Repair Applications. , 0, , .		0
27	Piezoelectric PVDF-TrFE/Hydroxyapatite Nanofibers for Bone Tissue Engineering. , 0, , .		0
28	Fabrication of Novel Electroconductive PAN/PEDOT:PSS Nanofibers for Osteochondral Tissue Regeneration. , 0, , .		0