Kevin W Plaxco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9466301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Aptamer-Based Sensors: A Platform Approach to High-Frequency Molecular Monitoring In Situ in the Living Body. Methods in Molecular Biology, 2022, 2393, 479-492.	0.4	13
2	Continuous monitoring of molecular biomarkers in microfluidic devices. Progress in Molecular Biology and Translational Science, 2022, 187, 295-333.	0.9	0
3	Protein–Protein Communication Mediated by an Antibodyâ€Responsive DNA Nanodevice**. Angewandte Chemie, 2022, 134, .	1.6	2
4	Protein–Protein Communication Mediated by an Antibodyâ€Responsive DNA Nanodevice**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
5	Rücktitelbild: Protein–Protein Communication Mediated by an Antibodyâ€Responsive DNA Nanodevice (Angew. Chem. 12/2022). Angewandte Chemie, 2022, 134, .	1.6	Ο
6	On the Disinfection of Electrochemical Aptamer-Based Sensors. , 2022, 1, 011604.		61
7	Improved calibration of electrochemical aptamer-based sensors. Scientific Reports, 2022, 12, 5535.	1.6	14
8	(Digital Presentation) Catalytic Interruption Mitigates Edge Effects in the Characterization of Heterogeneous, Insulating Nanoparticles. ECS Meeting Abstracts, 2022, MA2022-01, 2111-2111.	0.0	0
9	A wrinkled structure of gold film greatly improves the signaling of electrochemical aptamer-based biosensors. RSC Advances, 2021, 11, 671-677.	1.7	18
10	Seconds-Resolved, In Situ Measurements of Plasma Phenylalanine Disposition Kinetics in Living Rats. Analytical Chemistry, 2021, 93, 4023-4032.	3.2	35
11	Signal transduction with a swing. Nature Chemistry, 2021, 13, 392-393.	6.6	6
12	Veinâ€toâ€brain: Simultaneous, secondsâ€resolved measurements of intracranial and intravenous drug levels provide a highly timeâ€resolved picture of drug transport. FASEB Journal, 2021, 35, .	0.2	1
13	Nanoporous Gold for the Miniaturization of In Vivo Electrochemical Aptamer-Based Sensors. ACS Sensors, 2021, 6, 2299-2306.	4.0	48
14	Programmable, Multiplexed DNA Circuits Supporting Clinically Relevant, Electrochemical Antibody Detection. ACS Sensors, 2021, 6, 2442-2448.	4.0	32
15	Elucidating the Mechanisms Underlying the Signal Drift of Electrochemical Aptamer-Based Sensors in Whole Blood. ACS Sensors, 2021, 6, 3340-3347.	4.0	48
16	Switching the aptamer attachment geometry can dramatically alter the signalling and performance of electrochemical aptamer-based sensors. Chemical Communications, 2021, 57, 11693-11696.	2.2	12
17	The effect of charged residue substitutions on the thermodynamics of <scp>proteinâ€surface</scp> interactions. Protein Science, 2021, 30, 2408-2417.	3.1	3
18	Catalytic Interruption Mitigates Edge Effects in the Characterization of Heterogeneous, Insulating Nanoparticles. Journal of the American Chemical Society, 2021, 143, 18888-18898.	6.6	7

#	Article	IF	CITATIONS
19	Nanometer-Scale Force Profiles of Short Single- and Double-Stranded DNA Molecules on a Gold Surface Measured Using a Surface Forces Apparatus. Langmuir, 2021, 37, 13346-13352.	1.6	4
20	Optimal experiment design with applications to Pharmacokinetic modeling. , 2021, , .		0
21	An Electrochemical Biosensor Architecture Based on Protein Folding Supports Direct Realâ€Time Measurements in Whole Blood. Angewandte Chemie - International Edition, 2020, 59, 18442-18445.	7.2	29
22	An Electrochemical Biosensor Architecture Based on Protein Folding Supports Direct Realâ€īme Measurements in Whole Blood. Angewandte Chemie, 2020, 132, 18600-18603.	1.6	4
23	Attachment of Proteins to a Hydroxyl-Terminated Surface Eliminates the Stabilizing Effects of Polyols. Journal of the American Chemical Society, 2020, 142, 15349-15354.	6.6	5
24	Rational design to control the trade-off between receptor affinity and cooperativity. Proceedings of the United States of America, 2020, 117, 19136-19140.	3.3	17
25	Subsecond-Resolved Molecular Measurements Using Electrochemical Phase Interrogation of Aptamer-Based Sensors. Analytical Chemistry, 2020, 92, 14063-14068.	3.2	38
26	An electrochemical biosensor exploiting binding-induced changes in electron transfer of electrode-attached DNA origami to detect hundred nanometer-scale targets. Nanoscale, 2020, 12, 13907-13911.	2.8	16
27	Water as a Good Solvent for Unfolded Proteins: Folding and Collapse are Fundamentally Different. Journal of Molecular Biology, 2020, 432, 2882-2889.	2.0	26
28	Real-Time Monitoring of a Protein Biomarker. ACS Sensors, 2020, 5, 1877-1881.	4.0	60
29	E-DNA scaffold sensors and the reagentless, single-step, measurement of HIV-diagnostic antibodies in human serum. Microsystems and Nanoengineering, 2020, 6, 13.	3.4	27
30	Optimizing the Specificity Window of Biomolecular Receptors Using Structure-Switching and Allostery. ACS Sensors, 2020, 5, 1937-1942.	4.0	14
31	High frequency, real-time neurochemical and neuropharmacological measurements in situ in the living body. Translational Research, 2019, 213, 50-66.	2.2	7
32	Seconds-resolved pharmacokinetic measurements of the chemotherapeutic irinotecan <i>in situ</i> in the living body. Chemical Science, 2019, 10, 8164-8170.	3.7	74
33	Open Source Software for the Real-Time Control, Processing, and Visualization of High-Volume Electrochemical Data. Analytical Chemistry, 2019, 91, 12321-12328.	3.2	33
34	Ultra-High-Precision, in-vivo Pharmacokinetic Measurements Highlight the Need for and a Route Toward More Highly Personalized Medicine. Frontiers in Molecular Biosciences, 2019, 6, 69.	1.6	28
35	Electrochemical Aptamer-Based Sensors for Improved Therapeutic Drug Monitoring and High-Precision, Feedback-Controlled Drug Delivery. ACS Sensors, 2019, 4, 2832-2837.	4.0	142
36	Surface Attachment Enhances the Thermodynamic Stability of Proteinâ€L. Angewandte Chemie, 2019, 131, 1728-1732.	1.6	1

#	Article	IF	CITATIONS
37	An electrochemical scaffold sensor for rapid syphilis diagnosis. Analyst, The, 2019, 144, 5277-5283.	1.7	26
38	Commonly used FRET fluorophores promote collapse of an otherwise disordered protein. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8889-8894.	3.3	43
39	An electrochemical aptamer-based sensor for the rapid and convenient measurement of l-tryptophan. Analytical and Bioanalytical Chemistry, 2019, 411, 4629-4635.	1.9	35
40	Calibration-Free Measurement of Phenylalanine Levels in the Blood Using an Electrochemical Aptamer-Based Sensor Suitable for Point-of-Care Applications. ACS Sensors, 2019, 4, 3227-3233.	4.0	78
41	High frequency, calibration-free molecular measurements <i>in situ</i> in the living body. Chemical Science, 2019, 10, 10843-10848.	3.7	52
42	High-Precision Electrochemical Measurements of the Guanine-, Mismatch-, and Length-Dependence of Electron Transfer from Electrode-Bound DNA Are Consistent with a Contact-Mediated Mechanism. Journal of the American Chemical Society, 2019, 141, 1304-1311.	6.6	42
43	Surface Attachment Enhances the Thermodynamic Stability of Proteinâ€L. Angewandte Chemie - International Edition, 2019, 58, 1714-1718.	7.2	8
44	Exploiting the conformational-selection mechanism to control the response kinetics of a "smart― DNA hydrogel. Analyst, The, 2018, 143, 2531-2538.	1.7	17
45	Subsecond-Resolved Molecular Measurements in the Living Body Using Chronoamperometrically Interrogated Aptamer-Based Sensors. ACS Sensors, 2018, 3, 360-366.	4.0	98
46	Prolonged-access to cocaine induces distinct Homer2 DNA methylation, hydroxymethylation, and transcriptional profiles in the dorsomedial prefrontal cortex of Male Sprague-Dawley rats. Neuropharmacology, 2018, 143, 299-305.	2.0	9
47	High-Precision Control of Plasma Drug Levels Using Feedback-Controlled Dosing. ACS Pharmacology and Translational Science, 2018, 1, 110-118.	2.5	62
48	Chain Dynamics Limit Electron Transfer from Electrode-Bound, Single-Stranded Oligonucleotides. Journal of Physical Chemistry C, 2018, 122, 21441-21448.	1.5	25
49	Experimental Measurement of Surface Charge Effects on the Stability of a Surface-Bound Biopolymer. Langmuir, 2018, 34, 14993-14999.	1.6	14
50	Quantitative measurements of proteinâ^'surface interaction thermodynamics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8352-8357.	3.3	17
51	Electrochemical Aptamer-Based Sensors for Rapid Point-of-Use Monitoring of the Mycotoxin Ochratoxin A Directly in a Food Stream. Molecules, 2018, 23, 912.	1.7	34
52	Electrochemical DNA-Based Sensors for Molecular Quality Control: Continuous, Real-Time Melamine Detection in Flowing Whole Milk. Analytical Chemistry, 2018, 90, 10641-10645.	3.2	60
53	Expanding the Scope of Protein-Detecting Electrochemical DNA "Scaffold―Sensors. ACS Sensors, 2018, 3, 1271-1275.	4.0	37
54	Real-time measurement of small molecules directly in awake, ambulatory animals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 645-650.	3.3	302

#	Article	IF	CITATIONS
55	Simulation-Based Approach to Determining Electron Transfer Rates Using Square-Wave Voltammetry. Langmuir, 2017, 33, 4407-4413.	1.6	50
56	A DNA Nanodevice That Loads and Releases a Cargo with Hemoglobin-Like Allosteric Control and Cooperativity. Nano Letters, 2017, 17, 3225-3230.	4.5	25
57	A Biomimetic Phosphatidylcholineâ€Terminated Monolayer Greatly Improves the In Vivo Performance of Electrochemical Aptamerâ€Based Sensors. Angewandte Chemie, 2017, 129, 7600-7603.	1.6	17
58	A Biomimetic Phosphatidylcholineâ€Terminated Monolayer Greatly Improves the In Vivo Performance of Electrochemical Aptamerâ€Based Sensors. Angewandte Chemie - International Edition, 2017, 56, 7492-7495.	7.2	112
59	High Surface Area Electrodes Generated via Electrochemical Roughening Improve the Signaling of Electrochemical Aptamer-Based Biosensors. Analytical Chemistry, 2017, 89, 12185-12191.	3.2	92
60	Calibration-Free Electrochemical Biosensors Supporting Accurate Molecular Measurements Directly in Undiluted Whole Blood. Journal of the American Chemical Society, 2017, 139, 11207-11213.	6.6	161
61	New Architecture for Reagentless, Protein-Based Electrochemical Biosensors. Journal of the American Chemical Society, 2017, 139, 12113-12116.	6.6	37
62	Experimental Measurement of the Thermodynamics Underlying the Surface-Induced Structural Changes of Nucleic Acids and Proteins. Biophysical Journal, 2016, 110, 211a.	0.2	0
63	Survey of Redox-Active Moieties for Application in Multiplexed Electrochemical Biosensors. Analytical Chemistry, 2016, 88, 10452-10458.	3.2	66
64	Using Nature's "Tricks―To Rationally Tune the Binding Properties of Biomolecular Receptors. Accounts of Chemical Research, 2016, 49, 1884-1892.	7.6	123
65	Dual-Reporter Drift Correction To Enhance the Performance of Electrochemical Aptamer-Based Sensors in Whole Blood. Journal of the American Chemical Society, 2016, 138, 15809-15812.	6.6	115
66	Maximizing the Signal Gain of Electrochemical-DNA Sensors. Analytical Chemistry, 2016, 88, 11654-11662.	3.2	90
67	Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. Chemical Science, 2016, 7, 1200-1204.	3.7	56
68	A Modular, DNAâ€Based Beacon for Singleâ€5tep Fluorescence Detection of Antibodies and Other Proteins. Angewandte Chemie - International Edition, 2015, 54, 13214-13218.	7.2	93
69	High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water. Journal of Chemical Physics, 2015, 142, 164502.	1.2	94
70	Random coil negative control reproduces the discrepancy between scattering and FRET measurements of denatured protein dimensions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6631-6636.	3.3	48
71	Integrated Electrochemical Microsystems for Genetic Detection of Pathogens at the Point of Care. Accounts of Chemical Research, 2015, 48, 911-920.	7.6	135
72	A comparison of the folding kinetics of a small, artificially selected DNA aptamer with those of equivalently simple naturally occurring proteins. Protein Science, 2014, 23, 56-66.	3.1	12

#	Article	IF	CITATIONS
73	Intrinsic disorder as a generalizable strategy for the rational design of highly responsive, allosterically cooperative receptors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15048-15053.	3.3	69
74	Using the Populationâ€Shift Mechanism to Rationally Introduce "Hillâ€ŧype―Cooperativity into a Normally Nonâ€Cooperative Receptor. Angewandte Chemie - International Edition, 2014, 53, 9471-9475.	7.2	41
75	Effects of Crowding on the Stability of a Surface-Tethered Biopolymer: An Experimental Study of Folding in a Highly Crowded Regime. Journal of the American Chemical Society, 2014, 136, 8923-8927.	6.6	44
76	Principles for the Rational Design of Allosterically Cooperative Biomolecular Receptors. Biophysical Journal, 2014, 106, 614a.	0.2	0
77	Accurate Zygoteâ€Specific Discrimination of Singleâ€Nucleotide Polymorphisms Using Microfluidic Electrochemical DNA Melting Curves. Angewandte Chemie - International Edition, 2014, 53, 3163-3167.	7.2	29
78	Detection of IP-10 protein marker in undiluted blood serum via an electrochemical E-DNA scaffold sensor. Analyst, The, 2013, 138, 5580.	1.7	25
79	Thermodynamic Basis for Engineering High-Affinity, High-Specificity Binding-Induced DNA Clamp Nanoswitches. ACS Nano, 2013, 7, 10863-10869.	7.3	58
80	Real-Time, Aptamer-Based Tracking of Circulating Therapeutic Agents in Living Animals. Science Translational Medicine, 2013, 5, 213ra165.	5.8	291
81	Sequence and Temperature Dependence of the End-to-End Collision Dynamics of Single-Stranded DNA. Biophysical Journal, 2013, 104, 2485-2492.	0.2	20
82	Determinants of the Detection Limit and Specificity of Surface-Based Biosensors. Analytical Chemistry, 2013, 85, 6593-6597.	3.2	77
83	Allosterically Tunable, DNA-Based Switches Triggered by Heavy Metals. Journal of the American Chemical Society, 2013, 135, 13238-13241.	6.6	99
84	Electrochemical real-time nucleic acid amplification: towards point-of-care quantification of pathogens. Trends in Biotechnology, 2013, 31, 704-712.	4.9	63
85	Microfluidic Chip-Based Detection and Intraspecies Strain Discrimination of Salmonella Serovars Derived from Whole Blood of Septic Mice. Applied and Environmental Microbiology, 2013, 79, 2302-2311.	1.4	40
86	DNA biomolecular-electronic encoder and decoder devices constructed by multiplex biosensors. NPG Asia Materials, 2012, 4, e1-e1.	3.8	138
87	Biosensing with integrated CMOS nanopores. Proceedings of SPIE, 2012, , .	0.8	4
88	Engineering Biosensors with Extended, Narrowed, or Arbitrarily Edited Dynamic Range. Journal of the American Chemical Society, 2012, 134, 2876-2879.	6.6	135
89	Employing the Metabolic "Branch Point Effect―to Generate an All-or-None, Digital-like Response in Enzymatic Outputs and Enzyme-Based Sensors. Analytical Chemistry, 2012, 84, 1076-1082. 	3.2	41
90	Entropic and Electrostatic Effects on the Folding Free Energy of a Surface-Attached Biomolecule: An Experimental and Theoretical Study. Journal of the American Chemical Society, 2012, 134, 2120-2126.	6.6	47

#	Article	IF	CITATIONS
91	Rational Design of Allosteric Inhibitors and Activators Using the Population-Shift Model: In Vitro Validation and Application to an Artificial Biosensor. Journal of the American Chemical Society, 2012, 134, 15177-15180.	6.6	80
92	Small-Angle X-ray Scattering and Single-Molecule FRET Spectroscopy Produce Highly Divergent Views of the Low-Denaturant Unfolded State. Journal of Molecular Biology, 2012, 418, 226-236.	2.0	92
93	Wash-free, Electrochemical Platform for the Quantitative, Multiplexed Detection of Specific Antibodies. Analytical Chemistry, 2012, 84, 1098-1103.	3.2	64
94	Using Distal-Site Mutations and Allosteric Inhibition To Tune, Extend, and Narrow the Useful Dynamic Range of Aptamer-Based Sensors. Journal of the American Chemical Society, 2012, 134, 20601-20604.	6.6	132
95	Bioelectrochemical Switches for the Quantitative Detection of Antibodies Directly in Whole Blood. Journal of the American Chemical Society, 2012, 134, 15197-15200.	6.6	103
96	Quantification of Transcription Factor Binding in Cell Extracts Using an Electrochemical, Structure-Switching Biosensor. Journal of the American Chemical Society, 2012, 134, 3346-3348.	6.6	81
97	Rapid, Sensitive, and Quantitative Detection of Pathogenic DNA at the Point of Care through Microfluidic Electrochemical Quantitative Loopâ€Mediated Isothermal Amplification. Angewandte Chemie - International Edition, 2012, 51, 4896-4900.	7.2	230
98	Reâ€engineering Electrochemical Biosensors To Narrow or Extend Their Useful Dynamic Range. Angewandte Chemie - International Edition, 2012, 51, 6717-6721.	7.2	80
99	Probe accessibility effects on the performance of electrochemical biosensors employing DNA monolayers. Analytical and Bioanalytical Chemistry, 2012, 402, 413-421.	1.9	40
100	Dielectric Spectroscopy of Proteins as a Quantitative Experimental Test of Computational Models of Their Low-Frequency Harmonic Motions. Journal of the American Chemical Society, 2011, 133, 8942-8947.	6.6	96
101	CheapStat: An Open-Source, "Do-It-Yourself―Potentiostat for Analytical and Educational Applications. PLoS ONE, 2011, 6, e23783.	1.1	223
102	Electrochemical Biosensors Employing an Internal Electrode Attachment Site and Achieving Reversible, High Gain Detection of Specific Nucleic Acid Sequences. Analytical Chemistry, 2011, 83, 9462-9466.	3.2	60
103	Transcription Factor Beacons for the Quantitative Detection of DNA Binding Activity. Journal of the American Chemical Society, 2011, 133, 13836-13839.	6.6	79
104	Fabrication of Electrochemical-DNA Biosensors for the Reagentless Detection of Nucleic Acids, Proteins and Small Molecules. Journal of Visualized Experiments, 2011, , .	0.2	11
105	Switch-based biosensors: a new approach towards real-time, in vivo molecular detection. Trends in Biotechnology, 2011, 29, 1-5.	4.9	149
106	Polarity‧witching Electrochemical Sensor for Specific Detection of Singleâ€Nucleotide Mismatches. Angewandte Chemie - International Edition, 2011, 50, 11176-11180.	7.2	51
107	Twoâ€Step, PCRâ€Free Telomerase Detection by Using Exonuclease IIIâ€Aided Target Recycling. ChemBioChem, 2011, 12, 2745-2747.	1.3	48
108	Nanoporous silica colloidal films with molecular transport gated by aptamers responsive to small molecules. Collection of Czechoslovak Chemical Communications, 2011, 76, 683-694.	1.0	7

#	Article	IF	CITATIONS
109	High-Precision, In Vitro Validation of the Sequestration Mechanism for Generating Ultrasensitive Dose-Response Curves in Regulatory Networks. PLoS Computational Biology, 2011, 7, e1002171.	1.5	44
110	Principles of Biomolecular Recognition. , 2010, , 3-45.		13
111	Structure-switching biosensors: inspired by Nature. Current Opinion in Structural Biology, 2010, 20, 518-526.	2.6	163
112	The art of writing science. Protein Science, 2010, 19, 2261-2266.	3.1	25
113	Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors. Analyst, The, 2010, 135, 589.	1.7	92
114	Detection of Telomerase Activity in High Concentration of Cell Lysates Using Primer-Modified Gold Nanoparticles. Journal of the American Chemical Society, 2010, 132, 15299-15307.	6.6	105
115	A Mechanistic Study of Electron Transfer from the Distal Termini of Electrode-Bound, Single-Stranded DNAs. Journal of the American Chemical Society, 2010, 132, 16120-16126.	6.6	56
116	An Electrochemical Supersandwich Assay for Sensitive and Selective DNA Detection in Complex Matrices. Journal of the American Chemical Society, 2010, 132, 14346-14348.	6.6	214
117	Universality in the Timescales of Internal Loop Formation in Unfolded Proteins and Single-Stranded Oligonucleotides. Biophysical Journal, 2010, 99, 3959-3968.	0.2	22
118	Sensitive and Selective Amplified Fluorescence DNA Detection Based on Exonuclease III-Aided Target Recycling. Journal of the American Chemical Society, 2010, 132, 1816-1818.	6.6	477
119	Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10837-10841.	3.3	505
120	Tracking a Molecular Motor with a Nanoscale Optical Encoder. Nano Letters, 2010, 10, 1022-1027.	4.5	11
121	Label-Free, Dual-Analyte Electrochemical Biosensors: A New Class of Molecular-Electronic Logic Gates. Journal of the American Chemical Society, 2010, 132, 8557-8559.	6.6	117
122	On the Binding of Cationic, Water-Soluble Conjugated Polymers to DNA: Electrostatic and Hydrophobic Interactions. Journal of the American Chemical Society, 2010, 132, 1252-1254.	6.6	82
123	Investigation of an Anomalously Accelerating Substitution in the Folding of a Prototypical Two-State Protein. Journal of Molecular Biology, 2010, 403, 446-458.	2.0	17
124	Reagentless Measurement of Aminoglycoside Antibiotics in Blood Serum via an Electrochemical, Ribonucleic Acid Aptamer-Based Biosensor. Analytical Chemistry, 2010, 82, 7090-7095.	3.2	160
125	Exploiting Binding-Induced Changes in Probe Flexibility for the Optimization of Electrochemical Biosensors. Analytical Chemistry, 2010, 82, 73-76.	3.2	125
126	Folding-Based Electrochemical Biosensors: The Case for Responsive Nucleic Acid Architectures. Accounts of Chemical Research, 2010, 43, 496-505.	7.6	452

#	Article	IF	CITATIONS
127	Quantitative, reagentless, single-step electrochemical detection of anti-DNA antibodies directly in blood serum. Chemical Communications, 2010, 46, 1742.	2.2	32
128	Synthesis of Extended Single-Molecule Optical Encoders. Biophysical Journal, 2010, 98, 623a.	0.2	0
129	Using Triplex-Forming Oligonucleotide Probes for the Reagentless, Electrochemical Detection of Double-Stranded DNA. Analytical Chemistry, 2010, 82, 9109-9115.	3.2	87
130	Biomimetic glass nanopores employing aptamer gates responsive to a small molecule. Chemical Communications, 2010, 46, 7984.	2.2	50
131	Measuring distances within unfolded biopolymers using fluorescence resonance energy transfer: The effect of polymer chain dynamics on the observed fluorescence resonance energy transfer efficiency. Journal of Chemical Physics, 2009, 131, 085105.	1.2	25
132	Engineering new aptamer geometries for electrochemical aptamer-based sensors. Proceedings of SPIE, 2009, 7321, 732105.	0.8	13
133	Protein Complexes: The Evolution ofÂSymmetry. Current Biology, 2009, 19, R25-R26.	1.8	22
134	Beyond Molecular Beacons: Optical Sensors Based on the Bindingâ€Induced Folding of Proteins and Polypeptides. Chemistry - A European Journal, 2009, 15, 2244-2251.	1.7	39
135	On the Signaling of Electrochemical Aptamerâ€Based Sensors: Collision―and Foldingâ€Based Mechanisms. Electroanalysis, 2009, 21, 1267-1271.	1.5	71
136	Fluorescence Detection of Singleâ€Nucleotide Polymorphisms with a Single, Selfâ€Complementary, Tripleâ€ S tem DNA Probe. Angewandte Chemie - International Edition, 2009, 48, 4354-4358.	7.2	118
137	Surface chemistry effects on the performance of an electrochemical DNA sensor. Bioelectrochemistry, 2009, 76, 208-213.	2.4	86
138	Some recommendations for the practitioner to improve the precision of experimentally determined protein folding rates and I• values. Proteins: Structure, Function and Bioinformatics, 2009, 74, 461-474.	1.5	2
139	Optimization of a Reusable, DNA Pseudoknot-Based Electrochemical Sensor for Sequence-Specific DNA Detection in Blood Serum. Analytical Chemistry, 2009, 81, 656-661.	3.2	94
140	The Rate of Intramolecular Loop Formation in DNA and Polypeptides: The Absence of the Diffusion-Controlled Limit and Fractional Power-Law Viscosity Dependence. Journal of Physical Chemistry B, 2009, 113, 14026-14034.	1.2	25
141	An Electrochemical Sensor for the Detection of Proteinâ Small Molecule Interactions Directly in Serum and Other Complex Matrices. Journal of the American Chemical Society, 2009, 131, 6955-6957.	6.6	137
142	An Electrochemical Sensor for Single Nucleotide Polymorphism Detection in Serum Based on a Triple-Stem DNA Probe. Journal of the American Chemical Society, 2009, 131, 15311-15316.	6.6	171
143	Improving the Stability and Sensing of Electrochemical Biosensors by Employing Trithiol-Anchoring Groups in a Six-Carbon Self-Assembled Monolayer. Analytical Chemistry, 2009, 81, 1095-1100.	3.2	86
144	Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13802-13807.	3.3	146

#	Article	IF	CITATIONS
145	Non-Sequence-Specific Interactions Can Account for the Compaction of Proteins Unfolded under "Native―Conditions. Journal of Molecular Biology, 2009, 394, 343-350.	2.0	14
146	The Length and Viscosity Dependence of End-to-End Collision Rates in Single-Stranded DNA. Biophysical Journal, 2009, 97, 205-210.	0.2	34
147	Continuous, Real-Time Monitoring of Cocaine in Undiluted Blood Serum via a Microfluidic, Electrochemical Aptamer-Based Sensor. Journal of the American Chemical Society, 2009, 131, 4262-4266.	6.6	333
148	Comparing the Properties of Electrochemical-Based DNA Sensors Employing Different Redox Tags. Analytical Chemistry, 2009, 81, 9109-9113.	3.2	152
149	High Specificity, Electrochemical Sandwich Assays Based on Single Aptamer Sequences and Suitable for the Direct Detection of Small-Molecule Targets in Blood and Other Complex Matrices. Journal of the American Chemical Society, 2009, 131, 6944-6945.	6.6	391
150	Effects of Probe Length, Probe Geometry, and Redox-Tag Placement on the Performance of the Electrochemical E-DNA Sensor. Analytical Chemistry, 2009, 81, 2150-2158.	3.2	112
151	A general electrochemical method for label-free screening of protein–small molecule interactions. Chemical Communications, 2009, , 6222.	2.2	35
152	Reagentless, Electrochemical Approach for the Specific Detection of Double- and Single-Stranded DNA Binding Proteins. Analytical Chemistry, 2009, 81, 1608-1614.	3.2	72
153	Electrochemical Approaches to Aptamer-Based Sensing. , 2009, , 179-197.		4
154	E-DNA sensors for convenient, label-free electrochemical detection of hybridization. Mikrochimica Acta, 2008, 163, 149-155.	2.5	97
155	Optimization of Electrochemical Aptamer-Based Sensors via Optimization of Probe Packing Density and Surface Chemistry. Langmuir, 2008, 24, 10513-10518.	1.6	278
156	Label-Free SERS Detection of Small Proteins Modified to Act as Bifunctional Linkers. Journal of Physical Chemistry C, 2008, 112, 4880-4883.	1.5	96
157	Microfluidic Device Architecture for Electrochemical Patterning and Detection of Multiple DNA Sequences. Langmuir, 2008, 24, 1102-1107.	1.6	77
158	Studying protein dynamics in aqueous solutions through linear and non-linear THz spectroscopy. , 2008, , .		0
159	2P-115 DNA Dynamics in Solution and on Metal Surface(The 46th Annual Meeting of the Biophysical) Tj ETQq1	1 0,784314	4 rgBT /Over
160	THz SPECTROSCOPY OF PROTEINS IN WATER: DIRECT ABSORPTION AND CIRCULAR DICHROISM. Selected Topics in Electornics and Systems, 2008, , 81-90.	0.2	0
161	THz SPECTROSCOPY OF PROTEINS IN WATER: DIRECT ABSORPTION AND CIRCULAR DICHROISM. International Journal of High Speed Electronics and Systems, 2007, 17, 709-718.	0.3	2
162	0.15–3.72THz absorption of aqueous salts and saline solutions. Applied Physics Letters, 2007, 90, 031908.	1.5	25

#	Article	IF	CITATIONS
163	Aptamer-Based Electrochemical Detection of Picomolar Platelet-Derived Growth Factor Directly in Blood Serum. Analytical Chemistry, 2007, 79, 229-233.	3.2	329
164	Label-Free Electrochemical Detection of DNA in Blood Serum via Target-Induced Resolution of an Electrode-Bound DNA Pseudoknot. Journal of the American Chemical Society, 2007, 129, 11896-11897.	6.6	240
165	Electrochemical Detection of Parts-Per-Billion Lead via an Electrode-Bound DNAzyme Assembly. Journal of the American Chemical Society, 2007, 129, 262-263.	6.6	456
166	Chimeric peptide beacons: a direct polypeptide analog of DNA molecular beacons. Chemical Communications, 2007, , 4869.	2.2	33
167	Peptide Beacons:Â A New Design for Polypeptide-Based Optical Biosensors. Bioconjugate Chemistry, 2007, 18, 607-609.	1.8	51
168	Increasing the Resolution of Single Pair Fluorescence Resonance Energy Transfer Measurements in Solution via Molecular Cytometry. Analytical Chemistry, 2007, 79, 3509-3513.	3.2	10
169	Linear, redox modified DNA probes as electrochemical DNA sensors. Chemical Communications, 2007, , 3768.	2.2	108
170	Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor. Langmuir, 2007, 23, 6827-6834.	1.6	293
171	Influence of local and residual structures on the scaling behavior and dimensions of unfolded proteins. Biopolymers, 2007, 86, 321-328.	1.2	37
172	Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nature Protocols, 2007, 2, 2875-2880.	5.5	350
173	Collective Dynamics of Lysozyme in Water:Â Terahertz Absorption Spectroscopy and Comparison with Theory. Journal of Physical Chemistry B, 2006, 110, 24255-24259.	1.2	84
174	An Electronic, Aptamer-Based Small-Molecule Sensor for the Rapid, Label-Free Detection of Cocaine in Adulterated Samples and Biological Fluids. Journal of the American Chemical Society, 2006, 128, 3138-3139.	6.6	759
175	Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72THz. Journal of Chemical Physics, 2006, 124, 036101.	1.2	84
176	Comparison of the Signaling and Stability of Electrochemical DNA Sensors Fabricated from 6- or 11-Carbon Self-Assembled Monolayers. Langmuir, 2006, 22, 10796-10800.	1.6	103
177	Sequence-Specific, Electronic Detection of Oligonucleotides in Blood, Soil, and Foodstuffs with the Reagentless, Reusable E-DNA Sensor. Analytical Chemistry, 2006, 78, 5671-5677.	3.2	180
178	On the precision of experimentally determined protein folding rates and Â-values. Protein Science, 2006, 15, 553-563.	3.1	41
179	Differential Labeling of Closely Spaced Biosensor Electrodes via Electrochemical Lithography. Langmuir, 2006, 22, 1932-1936.	1.6	29
180	Excimer-Based Peptide Beacons:Â A Convenient Experimental Approach for Monitoring Polypeptideâ^'Protein and Polypeptideâ^'Oligonucleotide Interactions. Journal of the American Chemical Society, 2006, 128, 14018-14019.	6.6	77

#	Article	IF	CITATIONS
181	Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Protein Science, 2006, 15, 1175-1181.	3.1	188
182	Cooperativity and the origins of rapid, single-exponential kinetics in protein folding. Protein Science, 2006, 15, 1608-1618.	3.1	25
183	Methods for the accurate estimation of confidence intervals on protein folding φ-values. Protein Science, 2006, 15, 2257-2264.	3.1	12
184	α,ï‰-Dithiol Oligo(phenylene vinylene)s for the Preparation of High-Quality Ï€-Conjugated Self-Assembled Monolayers and Nanoparticle- Functionalized Electrodes. Advanced Functional Materials, 2006, 16, 2387-2392.	7.8	11
185	Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16677-16680.	3.3	220
186	Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4017-4021.	3.3	174
187	Terahertz Spectroscopy of Biopolymers in Water: Absorption and Circular Dichroism. , 2006, , .		2
188	Development of an electrochemical biosensor without a sandwich assay. , 2005, , .		1
189	Biosensors based on binding-modulated donor–acceptor distances. Trends in Biotechnology, 2005, 23, 186-192.	4.9	130
190	Label-Free Electronic Detection of Thrombin in Blood Serum by Using an Aptamer-Based Sensor. Angewandte Chemie - International Edition, 2005, 44, 5456-5459.	7.2	683
191	Engineering a signal transduction mechanism for protein-based biosensors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10841-10845.	3.3	74
192	Is There or Isn't There? The Case for (and Against) Residual Structure in Chemically Denatured Proteins. Critical Reviews in Biochemistry and Molecular Biology, 2005, 40, 181-189.	2.3	87
193	Apparent Debyeâ^'Huckel Electrostatic Effects in the Folding of a Simple, Single Domain Protein. Biochemistry, 2005, 44, 1243-1250.	1.2	37
194	Experimental Investigation of the Frequency and Substitution Dependence of Negative φ-Values in Two-State Proteins. Biochemistry, 2005, 44, 12160-12167.	1.2	20
195	Site-specific Dimensions Across a Highly Denatured Protein; A Single Molecule Study. Journal of Molecular Biology, 2005, 352, 672-682.	2.0	68
196	Protein folding: Defining a "standard―set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Science, 2005, 14, 602-616.	3.1	207
197	A Reagentless Signal-On Architecture for Electronic, Aptamer-Based Sensors via Target-Induced Strand Displacement. Journal of the American Chemical Society, 2005, 127, 17990-17991.	6.6	500
198	The Protein Folding Transition State: What Are φ-Values Really Telling Us?. Protein and Peptide Letters, 2005, 12, 117-122.	0.4	52

#	Article	IF	CITATIONS
199	Terahertz circular dichroism spectroscopy of biomolecules. , 2004, 5268, 19.		36
200	Random-coil behavior and the dimensions of chemically unfolded proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12491-12496.	3.3	629
201	Using Protein Folding Rates to Test Protein Folding Theories. Annual Review of Biochemistry, 2004, 73, 837-859.	5.0	61
202	Can Theory Predict Two-State Protein Folding Rates? An Experimental Perspective. , 2004, , 93-111.		0
203	The topomer search model: A simple, quantitative theory of two-state protein folding kinetics. Protein Science, 2003, 12, 17-26.	3.1	176
204	Contact order revisited: Influence of protein size on the folding rate. Protein Science, 2003, 12, 2057-2062.	3.1	327
205	Photoluminescence Quenching of Water-Soluble Conjugated Polymers by Viologen Derivatives:Â Effect of Hydrophobicity. Langmuir, 2003, 19, 3554-3556.	1.6	22
206	Cooperativity, Smooth Energy Landscapes and the Origins of Topology-dependent Protein Folding Rates. Journal of Molecular Biology, 2003, 326, 247-253.	2.0	82
207	NMR and Temperature-jump Measurements of de Novo Designed Proteins Demonstrate Rapid Folding in the Absence of Explicit Selection for Kinetics. Journal of Molecular Biology, 2003, 330, 813-819.	2.0	47
208	Comparison of the Folding Processes of Distantly Related Proteins. Importance of Hydrophobic Content in Folding. Journal of Molecular Biology, 2003, 330, 577-591.	2.0	47
209	Terahertz Circular Dichroism Spectroscopy: A Potential Approach to the In Situ Detection of Life's Metabolic and Genetic Machinery. Astrobiology, 2003, 3, 489-504.	1.5	61
210	Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6297-6301.	3.3	492
211	Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9134-9137.	3.3	985
212	How the folding rate constant of simple, single-domain proteins depends on the number of native contacts. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3535-3539.	3.3	137
213	Spectroscopy and Electrochemistry of the Covalent Pyridine-Cytochrome c Complex and a Pyridine-Induced, "Alkaline-like―Conformation. Journal of Physical Chemistry B, 2002, 106, 11375-11383.	1.2	13
214	Equilibrium Collapse and the Kinetic â€~Foldability' of Proteinsâ€. Biochemistry, 2002, 41, 321-325.	1.2	41
215	Residues participating in the protein folding nucleus do not exhibit preferential evolutionary conservation. Journal of Molecular Biology, 2002, 316, 225-233.	2.0	57
216	Toward a taxonomy of the denatured state: Small angle scattering studies of unfolded proteins. Advances in Protein Chemistry, 2002, 62, 241-262.	4.4	145

#	Article	IF	CITATIONS
217	High-Efficiency Fluorescence Quenching of Conjugated Polymers by Proteins. Journal of the American Chemical Society, 2002, 124, 5642-5643.	6.6	303
218	The Backbone Conformational Entropy of Protein Folding: Experimental Measures from Atomic Force Microscopy. Journal of Molecular Biology, 2002, 322, 645-652.	2.0	61
219	Unfolded, yes, but random? Never!. , 2001, 8, 659-660.		81
220	Evolutionary conservation in protein folding kinetics. Journal of Molecular Biology, 2000, 298, 303-312.	2.0	80
221	Topology, Stability, Sequence, and Length:  Defining the Determinants of Two-State Protein Folding Kinetics. Biochemistry, 2000, 39, 11177-11183.	1.2	360
222	Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Review of Scientific Instruments, 1999, 70, 4300-4303.	0.6	246
223	Chain collapse can occur concomitantly with the rate-limiting step in protein folding. Nature Structural Biology, 1999, 6, 554-556.	9.7	167
224	Protein chemistry comes of age. Again Trends in Biotechnology, 1998, 16, 278.	4.9	0
225	Simplified proteins: minimalist solutions to the â€~protein folding problem'. Current Opinion in Structural Biology, 1998, 8, 80-85.	2.6	64
226	The Folding Kinetics and Thermodynamics of the Fyn-SH3 Domainâ€. Biochemistry, 1998, 37, 2529-2537.	1.2	152
227	Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy. Journal of Molecular Biology, 1998, 276, 657-667.	2.0	126
228	Contact order, transition state placement and the refolding rates of single domain proteins 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 277, 985-994.	2.0	1,449
229	Limited internal friction in the rate-limiting step of a two-state protein folding reaction. Proceedings of the United States of America, 1998, 95, 13591-13596.	3.3	164
230	Monitoring Protein Folding Using Time-Resolved Biophysical Techniques. , 1998, , 163-172.		1
231	A comparison of the folding kinetics and thermodynamics of two homologous fibronectin type III modules. Journal of Molecular Biology, 1997, 270, 763-770.	2.0	119
232	The importance of being unfolded. Nature, 1997, 386, 657-659.	13.7	114
233	Reading, writing and redesigning. Nature, 1997, 388, 419-420.	13.7	10
234	The effects of guanidine hydrochloride on the 'random coil' conformations and NMR chemical shifts of the peptide series GGXGC. Journal of Biomolecular NMR, 1997, 10, 221-230.	1.6	96

#	Article	IF	CITATIONS
235	Time-resolved biophysical methods in the study of protein folding. Current Opinion in Structural Biology, 1996, 6, 630-636.	2.6	132
236	Rapid refolding of a proline-rich all-beta-sheet fibronectin type III module Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10703-10706.	3.3	79
237	Contributions of the Thymine Methyl Group to the Specific Recognition of Poly- and Mononucleotides: An Analysis of the Relative Free Energies of Solvation of Thymine and Uracil. Biochemistry, 1994, 33, 3050-3054.	1.2	24
238	Two-step covalent modification of proteins. Selective labeling of Schiff base-forming sites and selective blockade of the sense of smell in vivo. Journal of the American Chemical Society, 1985, 107, 6075-6084.	6.6	11