## Michael Sigal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9465927/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells.<br>Life Science Alliance, 2022, 5, e202101187.                                                              | 1.3 | 6         |
| 2  | Stem Cells, Helicobacter pylori, and Mutational Landscape: Utility of Preclinical Models to<br>Understand Carcinogenesis and to Direct Management of Gastric Cancer. Gastroenterology, 2022, 162,<br>1067-1087. | 0.6 | 21        |
| 3  | BMP feed-forward loop promotes terminal differentiation in gastric glands and is interrupted by H.<br>pylori-driven inflammation. Nature Communications, 2022, 13, 1577.                                        | 5.8 | 19        |
| 4  | Soluble Urokinase Plasminogen Activator Receptor Levels Are Associated with Severity of Fibrosis in Patients with Primary Sclerosing Cholangitis. Journal of Clinical Medicine, 2022, 11, 2479.                 | 1.0 | 2         |
| 5  | Gastric stem cells promote inflammation and gland remodeling in response to <i>Helicobacter<br/>pylori</i> via <scp>Rspo3‣gr4</scp> axis. EMBO Journal, 2022, 41, .                                             | 3.5 | 13        |
| 6  | Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nature Communications, 2021, 12, 1003.                                                  | 5.8 | 84        |
| 7  | Epithelial response to IFNâ€Î³ promotes SARS oVâ€2 infection. EMBO Molecular Medicine, 2021, 13, e13191.                                                                                                        | 3.3 | 62        |
| 8  | Defence and adaptation mechanisms of the intestinal epithelium upon infection. International Journal of Medical Microbiology, 2021, 311, 151486.                                                                | 1.5 | 11        |
| 9  | High Yap and Mll1 promote a persistent regenerative cell state induced by Notch signaling and loss of p53. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .        | 3.3 | 16        |
| 10 | The Role of Microbiota in Primary Sclerosing Cholangitis and Related Biliary Malignancies.<br>International Journal of Molecular Sciences, 2021, 22, 6975.                                                      | 1.8 | 22        |
| 11 | Elevated Flt3L Predicts Long-Term Survival in Patients with High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers, 2021, 13, 4463.                                                                | 1.7 | 2         |
| 12 | 29â€Elevated Flt3L predicts long-term survival in patients with high-grade gastroenteropancreatic neuroendocrine neoplasms. , 2021, 9, A34-A34.                                                                 |     | 0         |
| 13 | Microbe-Driven Genotoxicity in Gastrointestinal Carcinogenesis. International Journal of Molecular<br>Sciences, 2020, 21, 7439.                                                                                 | 1.8 | 10        |
| 14 | Responses of gastric epithelial stem cells and their niche to Helicobacter pylori infection. Annals of<br>Translational Medicine, 2020, 8, 568-568.                                                             | 0.7 | 8         |
| 15 | The Role of Wnt and R-spondin in the Stomach During Health and Disease. Biomedicines, 2019, 7, 44.                                                                                                              | 1.4 | 22        |
| 16 | R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon. Nature Communications, 2019, 10, 4368.                                                                                        | 5.8 | 91        |
| 17 | R-spondin-3 induces secretory, antimicrobial Lgr5+ cells in the stomach. Nature Cell Biology, 2019, 21, 812-823.                                                                                                | 4.6 | 53        |
| 18 | R-spondin-3 reguliert die mukosale Wundheilung im Kontext einer Kolitis durch Rekrutierung<br>differenzierter Zellen zum epithelialen Stammzellpool. Zeitschrift Fur Gastroenterologie, 2019, 57, .             | 0.2 | 0         |

MICHAEL SIGAL

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Helicobacter pylori Depletes Cholesterol in Gastric Glands to Prevent Interferon Gamma Signaling and Escape the Inflammatory Response. Gastroenterology, 2018, 154, 1391-1404.e9.                                    | 0.6  | 98        |
| 20 | Microbiome and Diseases: Colorectal Cancer. , 2018, , 231-249.                                                                                                                                                       |      | 4         |
| 21 | Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature, 2017, 548, 451-455.                                                                                                      | 13.7 | 159       |
| 22 | Coevolution between the Human Microbiota and the Epithelial Immune System. Digestive Diseases, 2016, 34, 190-193.                                                                                                    | 0.8  | 12        |
| 23 | 603 Helicobacter pylori Activates Gastric Epithelial Stem Cell Through Direct Colonization of the Gastric Glands. Gastroenterology, 2015, 148, S-117.                                                                | 0.6  | 0         |
| 24 | Helicobacter pylori Activates and Expands Lgr5+ Stem Cells Through Direct Colonization of the Gastric Glands. Gastroenterology, 2015, 148, 1392-1404.e21.                                                            | 0.6  | 199       |
| 25 | Quantitative Imaging of Gut Microbiota Spatial Organization. Cell Host and Microbe, 2015, 18, 478-488.                                                                                                               | 5.1  | 359       |
| 26 | Chemodetection and Destruction of Host Urea Allows Helicobacter pylori to Locate the Epithelium.<br>Cell Host and Microbe, 2015, 18, 147-156.                                                                        | 5.1  | 141       |
| 27 | Hepatoprotection in bile duct ligated mice mediated by darbepoetin-α is not caused by changes in hepatobiliary transporter expression. International Journal of Clinical and Experimental Pathology, 2013, 6, 80-90. | 0.5  | 2         |
| 28 | Darbepoetin-Î $\pm$ inhibits the perpetuation of necro-inflammation and delays the progression of cholestatic fibrosis in mice. Laboratory Investigation, 2010, 90, 1447-1456.                                       | 1.7  | 12        |