
Pooria Pasbakhsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9465863/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Applied Clay Science, 2013, 74, 47-57.	2.6	350
2	Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polymer Testing, 2008, 27, 841-850.	2.3	309
3	Z‣cheme Photocatalytic Systems for Solar Water Splitting. Advanced Science, 2020, 7, 1903171.	5.6	295
4	Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications. ACS Applied Materials & Interfaces, 2017, 9, 17476-17488.	4.0	258
5	EPDM/modified halloysite nanocomposites. Applied Clay Science, 2010, 48, 405-413.	2.6	202
6	Self-Healing Polymer Composites: Prospects, Challenges, and Applications. Polymer Reviews, 2016, 56, 225-261.	5.3	197
7	A structural comparison of halloysite nanotubes of different origin by Small-Angle Neutron Scattering (SANS) and Electric Birefringence. Applied Clay Science, 2018, 160, 71-80.	2.6	164
8	Influence of maleic anhydride grafted ethylene propylene diene monomer (MAH-g-EPDM) on the properties of EPDM nanocomposites reinforced by halloysite nanotubes. Polymer Testing, 2009, 28, 548-559.	2.3	135
9	Sub-2 nm Pt-decorated Zn0.5Cd0.5S nanocrystals with twin-induced homojunctions for efficient visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 224, 360-367.	10.8	133
10	ZnO deposited/encapsulated halloysite–poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Applied Clay Science, 2015, 111, 10-20.	2.6	130
11	Electrospun Nanofibrous Membranes of Polyacrylonitrile/Halloysite with Superior Water Filtration Ability. Journal of Physical Chemistry C, 2015, 119, 7949-7958.	1.5	127
12	Why does vacuum drive to the loading of halloysite nanotubes? The key role of water confinement. Journal of Colloid and Interface Science, 2019, 547, 361-369.	5.0	127
13	Physico-chemical characterisation of chitosan/halloysite composite membranes. Polymer Testing, 2013, 32, 265-271.	2.3	120
14	Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. Journal of Composite Materials, 2014, 48, 3705-3717.	1.2	107
15	Halloysite/alginate nanocomposite beads: Kinetics, equilibrium and mechanism for lead adsorption. Applied Clay Science, 2016, 119, 301-310.	2.6	88
16	All-solid-state Z-scheme photocatalyst with carbon nanotubes as an electron mediator for hydrogen evolution under simulated solar light. Chemical Engineering Journal, 2017, 316, 41-49.	6.6	87
17	A novel repeated self-healing epoxy composite with alginate multicore microcapsules. Journal of Materials Chemistry A, 2018, 6, 8470-8478.	5.2	85
18	Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites. Polymer Testing, 2014, 39, 101-114.	2.3	73

POORIA PASBAKHSH

#	Article	IF	CITATIONS
19	The Effect of Halloysite Nanotubes as a Novel Nanofiller on Curing Behaviour, Mechanical and Microstructural Properties of Ethylene Propylene Diene Monomer (EPDM) Nanocomposites. Polymer-Plastics Technology and Engineering, 2009, 48, 313-323.	1.9	69
20	Electrospun functionalized polyacrylonitrile–chitosan Bi-layer membranes for water filtration applications. RSC Advances, 2016, 6, 53882-53893.	1.7	68
21	Nanotubes in nanofibers: Antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application. Applied Clay Science, 2018, 160, 95-105.	2.6	64
22	Electrospun chitosan/polyethylene-oxide (PEO)/halloysites (HAL) membranes for bone regeneration applications. Applied Clay Science, 2020, 190, 105601.	2.6	59
23	Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: A potential scaffold for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110713.	2.5	57
24	Safely Dissolvable and Healable Active Packaging Films Based on Alginate and Pectin. Polymers, 2019, 11, 1594.	2.0	56
25	Toward high performance epoxy/halloysite nanocomposites: New insights based on rheological, curing, and impact properties. Materials & Design, 2015, 68, 42-53.	5.1	55
26	Overall pure water splitting using one-dimensional P-doped twinned Zn0.5Cd0.5S1-x nanorods via synergetic combination of long-range ordered homojunctions and interstitial S vacancies with prolonged carrier lifetime. Applied Catalysis B: Environmental, 2020, 262, 118309.	10.8	54
27	Physicochemical characterization of halloysite/alginate bionanocomposite hydrogel. Applied Clay Science, 2014, 101, 444-454.	2.6	51
28	Kappa-carrageenan/halloysite nanocomposite hydrogels as potential drug delivery systems. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 426-434.	2.7	48
29	Stabilization of a soft marine clay using halloysite nanotubes: A multi-scale approach. Applied Clay Science, 2019, 173, 65-78.	2.6	44
30	Halloysite nanotubes: prospects and challenges of their use as additives and carriers – A focused review. Clay Minerals, 2016, 51, 479-487.	0.2	43
31	3-D computational model of poly (lactic acid)/halloysite nanocomposites: Predicting elastic properties and stress analysis. Polymer, 2014, 55, 6418-6425.	1.8	42
32	The partial replacement of silica or calcium carbonate by halloysite nanotubes as fillers in ethylene propylene diene monomer composites. Journal of Applied Polymer Science, 2009, 113, 3910-3919.	1.3	41
33	SYNTHESIS AND CHARACTERISATION OF ELECTROSPUN CHITOSAN MEMBRANES REINFORCED BY HALLOYSITE NANOTUBES. Journal of Mechanics in Medicine and Biology, 2014, 14, 1450058.	0.3	40
34	Unique but diverse: some observations on the formation, structure and morphology of halloysite. Clay Minerals, 2016, 51, 395-416.	0.2	39
35	Halloysite nanotubes as a fine grained material for heavy metal ions removal in tropical biofiltration systems. Applied Clay Science, 2018, 160, 106-115.	2.6	39
36	Novel self-assembled 3D flower-like magnesium hydroxide coated granular polyurethane: Implication of its potential application for the removal of heavy metals. Journal of Cleaner Production, 2019, 216, 495-503.	4.6	39

Pooria Pasbakhsh

#	Article	IF	CITATIONS
37	A facile method for preparation of self-healing epoxy composites: using electrospun nanofibers as microchannels. Journal of Materials Chemistry A, 2015, 3, 16005-16012.	5.2	38
38	Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polymer Composites, 2016, 37, 861-869.	2.3	37
39	Z-scheme photocatalyst sheets with P-doped twinned Zn0.5Cd0.5S1-x and Bi4NbO8Cl connected by carbon electron mediator for overall water splitting under ambient condition. Chemical Engineering Journal, 2021, 404, 127030.	6.6	36
40	Electrosprayed Multi-Core Alginate Microcapsules as Novel Self-Healing Containers. Scientific Reports, 2016, 6, 34674.	1.6	35
41	Biological Self-Healing of Cement Paste and Mortar by Non-Ureolytic Bacteria Encapsulated in Alginate Hydrogel Capsules. Materials, 2020, 13, 3711.	1.3	35
42	Regenerated cellulose nanocomposites reinforced with exfoliated graphite nanosheets using BMIMCL ionic liquid. Polymer, 2014, 55, 3130-3138.	1.8	33
43	The rise and rise of halloysite. Clay Minerals, 2016, 51, 303-308.	0.2	31
44	Sustainable cementitious composites reinforced with metakaolin and halloysite nanotubes for construction and building applications. Applied Clay Science, 2020, 188, 105533.	2.6	31
45	Elasticity, microstructure and thermal stability of foliage and fruit fibres from four tropical crops. Fibers and Polymers, 2013, 14, 623-629.	1.1	29
46	Surface modified alginate multicore microcapsules and their application in self-healing epoxy coatings for metallic protection. Materials Chemistry and Physics, 2018, 215, 69-80.	2.0	29
47	Acid-modification and praseodymium loading of halloysite nanotubes as a corrosion inhibitor. Applied Clay Science, 2020, 184, 105355.	2.6	22
48	Stability and reusability of alginate-based adsorbents for repetitive lead (II) removal. Polymer Degradation and Stability, 2016, 123, 146-154.	2.7	21
49	Microemulsion Encapsulated into Halloysite Nanotubes and their Applications for Cleaning of a Marble Surface. Applied Sciences (Switzerland), 2018, 8, 1455.	1.3	20
50	Alginate nanoparticles as ocular drug delivery carriers. Journal of Drug Delivery Science and Technology, 2021, 66, 102889.	1.4	20
51	Multifunctional, Sustainable, and Biological Non-Ureolytic Self-Healing Systems for Cement-Based Materials. Engineering, 2022, 13, 217-237.	3.2	20
52	Stress transfer and fracture in nanostructured particulate-reinforced chitosan biopolymer composites: influence of interfacial shear stress and particle slenderness. Composite Interfaces, 2014, 21, 807-818.	1.3	18
53	Halloysite nanotubes from various geological deposits: New insights to acid etching and their impacts on products' characteristics. Journal of Environmental Chemical Engineering, 2021, 9, 106235.	3.3	15
54	High performance aliphatic polyurea films reinforced using nonfunctionalized multiwalled carbon nanotubes. Polymer Composites, 2020, 41, 1036-1044.	2.3	14

Pooria Pasbakhsh

#	Article	IF	CITATIONS
55	Can halloysite nanotubes be used to remediate zinc and lead-contaminated marine clay? A solidification/stabilization approach. Applied Clay Science, 2020, 186, 105441.	2.6	13
56	Resources Confirmation for Tourism Destinations Marketing Efforts Using PLS-MGA: The Moderating Impact of Semirural and Rural Tourism Destination. Sustainability, 2020, 12, 6787.	1.6	12
57	Capsule based self-healing composites: New insights on mechanical behaviour based on finite element analysis. Computational Materials Science, 2021, 192, 110203.	1.4	12
58	Synthesis of calcium carbonate microcapsules as self-healing containers. RSC Advances, 2019, 9, 23666-23677.	1.7	11
59	The active corrosion performance of silane coating treated by praseodymium encapsulated with halloysite nanotubes. Progress in Organic Coatings, 2020, 138, 105404.	1.9	10
60	Life cycle assessment on alginate-based nanocomposite beads for the removal of lead(II) from aqueous solutions. Journal of Water Process Engineering, 2022, 45, 102531.	2.6	10
61	Thermal properties of PLA/HNTs composites: Effect of different halloysite nanotube. AIP Conference Proceedings, 2018, , .	0.3	8
62	Direct measurement of the elasticity and fracture properties of electrospun polyacrylonitrile/halloysite fibrous mesh in water. Polymer Testing, 2018, 72, 11-23.	2.3	8
63	Chitinophaga extrema sp. nov., isolated from subsurface soil and leaf litter in a tropical peat swamp forest. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 6355-6363.	0.8	8
64	Nonporous, Strong, Stretchable, and Transparent Electrospun Aromatic Polyurea Nanocomposites as Potential Anticorrosion Coating Films. Nanomaterials, 2021, 11, 2998.	1.9	8
65	New Insights into Segmental Packing, Chain Dynamics and Thermomechanical Performance of Aliphatic Polyurea Composites: Comparison between Silica Oxides and Titanium (III) Oxides. Macromolecular Materials and Engineering, 2022, 307, 2100582.	1.7	7
66	Chitosan/Cellulose/Halloysite Membranes Produced Using Solvent Casting Method. Polymers and Polymer Composites, 2015, 23, 325-332.	1.0	6
67	Natural Hollow Clay Nanotubes and Their Applications as Polymer Nanocomposites in Tissue Engineering. Journal of Science: Advanced Materials and Devices, 2022, , 100431.	1.5	6
68	Electron beam irradiation of sulphur vulcanised ethylene propylene diene monomer (EPDM) nanocomposites reinforced by halloysite nanotubes. Plastics, Rubber and Composites, 2012, 41, 430-440.	0.9	5
69	A Comparative Analysis of the Reinforcing Efficiency of Silsesquioxane Nanoparticles versus Apatite Nanoparticles in Chitosan Biocomposite Fibres. Journal of Composites Science, 2017, 1, 9.	1.4	5
70	Finite Element Analysis of Copper Wire Bonding in Integrated Circuit Devices. Advanced Materials Research, 2012, 566, 293-299.	0.3	3
71	Dataset on structure and mechanical properties of electrospun polyacrylonitrile nanofibrous mesh reinforced by halloysite nanotubes. Data in Brief, 2018, 21, 2170-2178.	0.5	3
72	A three-dimensional (3D) printing approach to fabricate an isolation chip for high throughput <i>in situ</i> cultivation of environmental microbes. Lab on A Chip, 2022, 22, 387-402.	3.1	3

#	Article	IF	CITATIONS
73	Micromechanical Characterization of Poly(Lactic Acid)/Halloysite Bionanocomposite Membrane. , 2019, , 53-67.		2
74	Performance of 3D printed poly(lactic acid)/halloysite nanocomposites. , 2020, , 251-267.		2
75	Unidirectionally aligned and randomly oriented electrospun nanofibrous polyacrylonitrile membranes. , 2021, , 361-381.		2
76	CURRENT RESEARCH ON CHITOSANHALLOYSITE COMPOSITES. , 2015, , 235-248.		2
77	Improving the thermal, termite resistance and anti-wetting properties of tropical timber using a polymethyl acrylate/halloysite coating. , 2020, , 257-273.		1
78	The Effect of Various Reinforcements on the Ablation, Thermal and Microstructural Properties of Phenolic Matrix Composites. Key Engineering Materials, 2007, 334-335, 57-60.	0.4	0
79	Modification of halloysite filler with phosphonium based deep eutectic solvents for PLA/HNTs composites. AIP Conference Proceedings, 2018, , .	0.3	Ο