Nan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9465834/publications.pdf

Version: 2024-02-01

172207 288905 2,688 43 29 40 h-index citations g-index papers 44 44 44 2151 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters. Bioresource Technology, 2017, 241, 1118-1126.	4.8	195
2	Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Conversion and Management, 2019, 196, 1316-1325.	4.4	172
3	Effects of feedstock characteristics on microwave-assisted pyrolysis – A review. Bioresource Technology, 2017, 230, 143-151.	4.8	169
4	A review on the non-thermal plasma-assisted ammonia synthesis technologies. Journal of Cleaner Production, 2018, 177, 597-609.	4.6	150
5	Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chemical Engineering Journal, 2021, 418, 129412.	6.6	148
6	Fast microwave-assisted pyrolysis of wastes for biofuels production – A review. Bioresource Technology, 2020, 297, 122480.	4.8	137
7	Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO. Energy Conversion and Management, 2017, 149, 432-441.	4.4	126
8	Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification. Bioresource Technology, 2020, 298, 122263.	4.8	116
9	In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin. Bioresource Technology, 2018, 247, 851-858.	4.8	108
10	Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization. Bioresource Technology, 2018, 256, 295-301.	4.8	96
11	Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia. International Journal of Hydrogen Energy, 2017, 42, 19056-19066.	3.8	82
12	Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis. Fuel, 2017, 196, 261-268.	3.4	81
13	Applications of calcium oxide–based catalysts in biomass pyrolysis/gasification – A review. Journal of Cleaner Production, 2021, 291, 125826.	4.6	80
14	Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system. Bioresource Technology, 2020, 314, 123756.	4.8	69
15	Auto-flocculation microalgae species Tribonema sp. and Synechocystis sp. with T-IPL pretreatment to improve swine wastewater nutrient removal. Science of the Total Environment, 2020, 725, 138263.	3.9	60
16	Silicon carbide foam supported ZSM-5 composite catalyst for microwave-assisted pyrolysis of biomass. Bioresource Technology, 2018, 267, 257-264.	4.8	51
17	<i>In situ</i> plasma-assisted atmospheric nitrogen fixation using water and spray-type jet plasma. Chemical Communications, 2018, 54, 2886-2889.	2.2	50
18	Oil production from microwave-assisted pyrolysis of a low rank American brown coal. Energy Conversion and Management, 2018, 159, 76-84.	4.4	48

#	Article	IF	Citations
19	Atmospheric Plasma-Assisted Ammonia Synthesis Enhanced via Synergistic Catalytic Absorption. ACS Sustainable Chemistry and Engineering, 2019, 7, 100-104.	3.2	48
20	Pressurized ex-situ catalytic co-pyrolysis of polyethylene and lignin: Efficient BTEX production and process mechanism analysis. Chemical Engineering Journal, 2022, 431, 134122.	6.6	47
21	Tribonema sp. and Chlorella zofingiensis co-culture to treat swine wastewater diluted with fishery wastewater to facilitate harvest. Bioresource Technology, 2020, 297, 122516.	4.8	43
22	Characteristics of the catalytic fast pyrolysis of vegetable oil soapstock for hydrocarbon-rich fuel. Energy Conversion and Management, 2020, 213, 112860.	4.4	42
23	Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods. Renewable and Sustainable Energy Reviews, 2022, 165, 112607.	8.2	42
24	Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production. Bioresource Technology, 2018, 259, 461-464.	4.8	41
25	Gasification Technologies and Their Energy Potentials. , 2019, , 193-206.		41
26	Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chemistry, 2019, 290, 270-276.	4.2	38
27	Pyrolysis-catalysis for waste polyolefin conversion into low aromatic naphtha. Energy Conversion and Management, 2021, 245, 114578.	4.4	37
28	Biofuels: Introduction., 2019,, 3-43.		36
29	Catalytic fast pyrolysis of low density polyethylene into naphtha with high selectivity by dual-catalyst tandem catalysis. Science of the Total Environment, 2021, 771, 144995.	3.9	35
30	Sustainable Nonâ€Thermal Plasmaâ€Assisted Nitrogen Fixationâ€"Synergistic Catalysis. ChemSusChem, 2019, 12, 3702-3712.	3.6	31
31	Effect of lime mud on the reaction kinetics and thermodynamics of biomass pyrolysis. Bioresource Technology, 2020, 310, 123475.	4.8	30
32	A structured catalyst of ZSM-5/SiC foam for chemical recycling of waste plastics via catalytic pyrolysis. Chemical Engineering Journal, 2022, 440, 135836.	6.6	29
33	Syngas production from microwave-assisted air gasification of biomass: Part 2 model validation. Renewable Energy, 2019, 140, 625-632.	4.3	27
34	The effect of different particle sizes and HCl-modified kaolin on catalytic pyrolysis characteristics of reworked polypropylene plastics. Energy, 2020, 213, 119080.	4.5	27
35	Microwaveâ€Assisted Pyrolysis of Biomass for Bioâ€Oil Production. , 0, , .		26
36	Pulse pyrolysis of waste cooking oil over CaO: Exploration of catalyst deactivation pathway based on feedstock characteristics. Applied Catalysis B: Environmental, 2022, 304, 120968.	10.8	25

#	Article	IF	Citations
37	Plasma <i>in situ</i> gas–liquid nitrogen fixation using concentrated high-intensity electric field. Journal Physics D: Applied Physics, 2019, 52, 494001.	1.3	24
38	Applications of microwave energy in gas production and tar removal during biomass gasification. Sustainable Energy and Fuels, 2020, 4, 5927-5946.	2.5	23
39	Characterization, bioavailability and protective effects of phenolic-rich extracts from almond hulls against pro-oxidant induced toxicity in Caco-2 cells. Food Chemistry, 2020, 322, 126742.	4.2	20
40	Chemical upcycling of waste polyolefinic plastics to low-carbon synthetic naphtha for closing the plastic use loop. Science of the Total Environment, 2021, 782, 146897.	3.9	19
41	Synthesis of CaO from waste shells for microwave-assisted catalytic pyrolysis of waste cooking oil to produce aromatic-rich bio-oil. Science of the Total Environment, 2022, 827, 154186.	3.9	11
42	Microwave-Assisted Pyrolysis as an Alternative to Vacuum Distillation for Methyl Ester Recovery from Biodiesel Vacuum Distillation Bottoms. ACS Sustainable Chemistry and Engineering, 2018, 6, 14348-14355.	3.2	4
43	Gasification and pyrolysis of waste. , 2020, , 263-297.		0