Ramon A Alvarez-Puebla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9465203/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
2	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
3	Zeptomol Detection Through Controlled Ultrasensitive Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2009, 131, 4616-4618.	6.6	520
4	Tuning Size and Sensing Properties in Colloidal Gold Nanostars. Langmuir, 2010, 26, 14943-14950.	1.6	447
5	Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8157-8161.	3.3	412
6	CuTe Nanocrystals: Shape and Size Control, Plasmonic Properties, and Use as SERS Probes and Photothermal Agents. Journal of the American Chemical Society, 2013, 135, 7098-7101.	6.6	403
7	Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nature Materials, 2012, 11, 604-607.	13.3	395
8	SERSâ€Based Diagnosis and Biodetection. Small, 2010, 6, 604-610.	5.2	393
9	Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials, 2018, 11, 1154.	1.3	352
10	Light Concentration at the Nanometer Scale. Journal of Physical Chemistry Letters, 2010, 1, 2428-2434.	2.1	290
11	Traps and cages for universal SERS detection. Chemical Society Reviews, 2012, 41, 43-51.	18.7	290
12	Au@pNIPAM Colloids as Molecular Traps for Surfaceâ€Enhanced, Spectroscopic, Ultraâ€Sensitive Analysis. Angewandte Chemie - International Edition, 2009, 48, 138-143.	7.2	286
13	Surface-enhanced Raman scattering on colloidal nanostructures. Advances in Colloid and Interface Science, 2005, 116, 45-61.	7.0	265
14	Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale, 2011, 3, 1304.	2.8	253
15	SERS Detection of Small Inorganic Molecules and Ions. Angewandte Chemie - International Edition, 2012, 51, 11214-11223.	7.2	247
16	Role of Nanoparticle Surface Charge in Surface-Enhanced Raman Scattering. Journal of Physical Chemistry B, 2005, 109, 3787-3792.	1.2	243
17	Surface Enhanced Raman Scattering Using Star-Shaped Gold Colloidal Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 7336-7340.	1.5	224
18	Effects of the Excitation Wavelength on the SERS Spectrum. Journal of Physical Chemistry Letters, 2012, 3, 857-866.	2.1	220

#	Article	IF	CITATIONS
19	Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles. Langmuir, 2009, 25, 13894-13899.	1.6	200
20	Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. Journal of the Royal Society Interface, 2010, 7, S435-50.	1.5	180
21	Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life applications. Chemical Society Reviews, 2018, 47, 4909-4923.	18.7	180
22	Nanoimprinted SERS-Active Substrates with Tunable Surface Plasmon Resonances. Journal of Physical Chemistry C, 2007, 111, 6720-6723.	1.5	177
23	Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst, The, 2004, 129, 1251.	1.7	164
24	Environmental applications of plasmon assisted Raman scattering. Energy and Environmental Science, 2010, 3, 1011.	15.6	155
25	Organized Plasmonic Clusters with High Coordination Number and Extraordinary Enhancement in Surfaceâ€Enhanced Raman Scattering (SERS). Angewandte Chemie - International Edition, 2012, 51, 12688-12693.	7.2	154
26	Direct Surfaceâ€Enhanced Raman Scattering Analysis of DNA Duplexes. Angewandte Chemie - International Edition, 2015, 54, 1144-1148.	7.2	152
27	SERS-Active Gold Lace Nanoshells with Built-in Hotspots. Nano Letters, 2010, 10, 4013-4019.	4.5	151
28	Synthesis and SERS Properties of Nanocrystalline Gold Octahedra Generated from Thermal Decomposition of HAuCl4 in Block Copolymers. Advanced Materials, 2006, 18, 3233-3237.	11.1	149
29	Design of SERS-Encoded, Submicron, Hollow Particles Through Confined Growth of Encapsulated Metal Nanoparticles. Journal of the American Chemical Society, 2009, 131, 2699-2705.	6.6	144
30	Multiplex optical sensing with surface-enhanced Raman scattering: A critical review. Analytica Chimica Acta, 2012, 745, 10-23.	2.6	130
31	Modulation of Localized Surface Plasmons and SERS Response in Gold Dumbbells through Silver Coating. Journal of Physical Chemistry C, 2010, 114, 10417-10423.	1.5	128
32	Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chemical Science, 2010, 1, 174.	3.7	127
33	Intracellular mapping with SERS-encoded gold nanostars. Integrative Biology (United Kingdom), 2011, 3, 922.	0.6	127
34	Influence of Iodide Ions on the Growth of Gold Nanorods: Tuning Tip Curvature and Surface Plasmon Resonance. Advanced Functional Materials, 2008, 18, 3780-3786.	7.8	124
35	The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Physical Chemistry Chemical Physics, 2009, 11, 5909.	1.3	124
36	SERS Quantification and Characterization of Proteins and Other Biomolecules. Langmuir, 2017, 33, 9711-9730.	1.6	121

#	Article	IF	CITATIONS
37	Loading of Exponentially Grown LBL Films with Silver Nanoparticles and Their Application to Generalized SERS Detection. Angewandte Chemie - International Edition, 2009, 48, 5326-5329.	7.2	117
38	Silver Nanowire Layer-by-Layer Films as Substrates for Surface-Enhanced Raman Scattering. Analytical Chemistry, 2005, 77, 378-382.	3.2	115
39	Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today, 2010, 5, 21-27.	6.2	109
40	Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. Journal of Materials Chemistry, 2011, 21, 11544.	6.7	108
41	Theoretical study on fulvic acid structure, conformation and aggregation. Science of the Total Environment, 2006, 358, 243-254.	3.9	107
42	Highly Sensitive SERS Quantification of the Oncogenic Protein c-Jun in Cellular Extracts. Journal of the American Chemical Society, 2013, 135, 10314-10317.	6.6	106
43	Aqueous Stable Gold Nanostar/ZIFâ€8 Nanocomposites for Lightâ€Triggered Release of Active Cargo Inside Living Cells. Angewandte Chemie - International Edition, 2019, 58, 7078-7082.	7.2	103
44	Selfâ€Assembly of Au@Ag Nanorods Mediated by Gemini Surfactants for Highly Efficient SERSâ€Active Supercrystals. Advanced Optical Materials, 2013, 1, 477-481.	3.6	101
45	Highly Catalytic Single-Crystal Dendritic Pt Nanostructures Supported on Carbon Nanotubes. Chemistry of Materials, 2009, 21, 1531-1535.	3.2	100
46	Recyclable Molecular Trapping and SERS Detection in Silver-Loaded Agarose Gels with Dynamic Hot Spots. Analytical Chemistry, 2009, 81, 9233-9238.	3.2	99
47	Universal One-Pot and Scalable Synthesis of SERS Encoded Nanoparticles. Chemistry of Materials, 2015, 27, 950-958.	3.2	99
48	Surface-Enhanced Raman Scattering on Dendrimer/Metallic Nanoparticle Layer-by-Layer Film Substrates. Langmuir, 2005, 21, 5576-5581.	1.6	98
49	Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: The case of cocaine. Nanoscale, 2009, 1, 153.	2.8	98
50	SERS detection of environmental pollutants in humic acid–gold nanoparticle composite materials. Analyst, The, 2007, 132, 1210.	1.7	96
51	Multifunctional Microgel Magnetic/Optical Traps for SERS Ultradetection. Langmuir, 2011, 27, 4520-4525.	1.6	96
52	Effect of pH on the aggregation of a gray humic acid in colloidal and solid states. Chemosphere, 2005, 59, 659-667.	4.2	95
53	Synthesis of Silver Nanoparticles with Controllable Surface Charge and Their Application to Surface-Enhanced Raman Scattering. Analytical Chemistry, 2009, 81, 2280-2285.	3.2	95
54	Large-Area Organization of pNIPAM-Coated Nanostars as SERS Platforms for Polycyclic Aromatic Hydrocarbons Sensing in Gas Phase. Langmuir, 2012, 28, 9168-9173.	1.6	94

#	Article	IF	CITATIONS
55	Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage. Accounts of Chemical Research, 2019, 52, 1844-1854.	7.6	94
56	Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water. Nanoscale, 2014, 6, 8368-8375.	2.8	92
57	SERS Detection of Amyloid Oligomers on Metallorganic-Decorated Plasmonic Beads. ACS Applied Materials & Interfaces, 2015, 7, 9420-9428.	4.0	89
58	Revealing DNA Interactions with Exogenous Agents by Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2015, 137, 469-476.	6.6	88
59	Surface-Enhanced Raman Scattering on Nanoshells with Tunable Surface Plasmon Resonance. Langmuir, 2005, 21, 10504-10508.	1.6	87
60	Simultaneous SERS detection of copper and cobalt at ultratrace levels. Nanoscale, 2013, 5, 5841.	2.8	87
61	Growing Au/Ag Nanoparticles within Microgel Colloids for Improved Surfaceâ€Enhanced Raman Scattering Detection. Chemistry - A European Journal, 2010, 16, 9462-9467.	1.7	82
62	Controlling the size and shape of gold nanoparticles in fulvic acid colloidal solutions and their optical characterization using SERS. Journal of Materials Chemistry, 2005, 15, 3045.	6.7	75
63	Quantitative Surface-Enhanced Raman Scattering Ultradetection of Atomic Inorganic Ions: The Case of Chloride. ACS Nano, 2011, 5, 7539-7546.	7.3	75
64	Macroscale Plasmonic Substrates for Highly Sensitive Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2013, 52, 6459-6463.	7.2	75
65	Growth of Sharp Tips on Gold Nanowires Leads to Increased Surface-Enhanced Raman Scattering Activity. Journal of Physical Chemistry Letters, 2010, 1, 24-27.	2.1	74
66	Plasmonic Nanoprobes for Realâ€Time Optical Monitoring of Nitric Oxide inside Living Cells. Angewandte Chemie - International Edition, 2013, 52, 13694-13698.	7.2	74
67	Surface-Enhanced Raman Scattering Surface Selection Rules for the Proteomic Liquid Biopsy in Real Samples: Efficient Detection of the Oncoprotein c-MYC. Journal of the American Chemical Society, 2016, 138, 14206-14209.	6.6	72
68	Surface-Enhanced Raman Spectroscopy in Cancer Diagnosis, Prognosis and Monitoring. Cancers, 2019, 11, 748.	1.7	71
69	Retention of Co(II), Ni(II), and Cu(II) on a Purified Brown Humic Acid. Modeling and Characterization of the Sorption Process. Langmuir, 2004, 20, 3657-3664.	1.6	70
70	Nanoreactors for Simultaneous Remote Thermal Activation and Optical Monitoring of Chemical Reactions. Journal of the American Chemical Society, 2013, 135, 13616-13619.	6.6	70
71	Bifunctional Nanocomposites with Long-Term Stability as SERS Optical Accumulators for Ultrasensitive Analysis. Journal of Physical Chemistry C, 2009, 113, 3373-3377.	1.5	68
72	Plasmonic Mesoporous Composites as Molecular Sieves for SERS Detection. Journal of Physical Chemistry Letters, 2013, 4, 2715-2720.	2.1	66

#	Article	IF	CITATIONS
73	Quantitative Particle–Cell Interaction: Some Basic Physicochemical Pitfalls. Langmuir, 2017, 33, 6639-6646.	1.6	65
74	Synthetic Routes and Plasmonic Properties of Noble Metal Nanoplates. European Journal of Inorganic Chemistry, 2010, 2010, 4288-4297.	1.0	64
75	Optical Sensing of Small Ions with Colloidal Nanoparticles. Chemistry of Materials, 2012, 24, 738-745.	3.2	60
76	Silicon nanoparticles as Raman scattering enhancers. Nanoscale, 2014, 6, 5666-5670.	2.8	60
77	Ultrasensitive Direct Quantification of Nucleobase Modifications in DNA by Surfaceâ€Enhanced Raman Scattering: The Case of Cytosine. Angewandte Chemie - International Edition, 2015, 54, 13650-13654.	7.2	60
78	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	7.3	60
79	Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids. Scientific Reports, 2016, 6, 29014.	1.6	59
80	Surface-enhanced Raman scattering holography. Nature Nanotechnology, 2020, 15, 1005-1011.	15.6	59
81	Spiked Gold Beads as Substrates for Singleâ€Particle SERS. ChemPhysChem, 2012, 13, 2561-2565.	1.0	56
82	Spectroscopically Encoded Microspheres for Antigen Biosensing. Langmuir, 2007, 23, 6482-6485.	1.6	55
83	Cancer characterization and diagnosis with SERS-encoded particles. Cancer Nanotechnology, 2017, 8, .	1.9	55
84	Cu(II) retention on a humic substance. Journal of Colloid and Interface Science, 2004, 270, 47-55.	5.0	54
85	Self-assembled nanorod supercrystals for ultrasensitive SERS diagnostics. Nano Today, 2012, 7, 6-9.	6.2	54
86	Cancer Diagnosis through SERS and Other Related Techniques. International Journal of Molecular Sciences, 2020, 21, 2253.	1.8	53
87	From Nano to Micro: Synthesis and Optical Properties of Homogeneous Spheroidal Gold Particles and Their Superlattices. Langmuir, 2012, 28, 8909-8914.	1.6	52
88	Nanoparticle-based mobile biosensors for the rapid detection of sepsis biomarkers in whole blood. Nanoscale Advances, 2020, 2, 1253-1260.	2.2	52
89	Fast Optical Chemical and Structural Classification of RNA. ACS Nano, 2016, 10, 2834-2842.	7.3	51
90	Controlling inter-nanoparticle coupling by wrinkle-assisted assembly. Soft Matter, 2011, 7, 4093.	1.2	50

#	Article	IF	CITATIONS
91	Surface-Enhanced Raman Scattering-Based Detection of the Interactions between the Essential Cell Division FtsZ Protein and Bacterial Membrane Elements. ACS Nano, 2012, 6, 7514-7520.	7.3	50
92	Modular assembly of plasmonic core–satellite structures as highly brilliant SERS-encoded nanoparticles. Nanoscale Advances, 2019, 1, 122-131.	2.2	50
93	Surface-Enhanced Raman Scattering (SERS) Spectroscopy for Sensing and Characterization of Exosomes in Cancer Diagnosis. Cancers, 2021, 13, 2179.	1.7	49
94	Direct Quantification of DNA Base Composition by Surface-Enhanced Raman Scattering Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 3037-3041.	2.1	47
95	Conformational SERS Classification of <i>Kâ€Ras</i> Point Mutations for Cancer Diagnostics. Angewandte Chemie - International Edition, 2017, 56, 2381-2385.	7.2	46
96	Optical Enhancing Properties of Anisotropic Gold Nanoplates Prepared with Different Fractions of a Natural Humic Substance. Chemistry of Materials, 2008, 20, 1516-1521.	3.2	45
97	Online SERS Quantification of <i>Staphylococcus aureus</i> and the Application to Diagnostics in Human Fluids. Advanced Materials Technologies, 2016, 1, 1600163.	3.0	45
98	Chemically stable silver nanoparticle-crosslinked polymer microspheres. Journal of Colloid and Interface Science, 2008, 319, 572-576.	5.0	44
99	Plasmon Tunability of Gold Nanostars at the Tip Apexes. ACS Omega, 2018, 3, 17173-17179.	1.6	44
100	Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA. Analyst, The, 2016, 141, 5170-5180.	1.7	43
101	A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes. Nanoscale, 2016, 8, 7326-7333.	2.8	42
102	Boosting the Quantitative Inorganic Surface-Enhanced Raman Scattering Sensing to the Limit: The Case of Nitrite/Nitrate Detection. Journal of Physical Chemistry Letters, 2015, 6, 868-874.	2.1	41
103	SERS-fluorescent encoded particles as dual-mode optical probes. Applied Materials Today, 2018, 13, 1-14.	2.3	41
104	Gold Colloids with Unconventional Angled Shapes. Langmuir, 2009, 25, 11431-11435.	1.6	40
105	Spontaneous and stimulated electron–photon interactions in nanoscale plasmonic near fields. Light: Science and Applications, 2021, 10, 82.	7.7	40
106	Microdroplet fabrication of silver–agarose nanocomposite beads for SERS optical accumulation. Soft Matter, 2011, 7, 1321-1325.	1.2	39
107	Fabrication and SERS properties of complex and organized nanoparticle plasmonic clusters stable in solution. Nanoscale, 2020, 12, 14948-14956.	2.8	39
108	Continuous-wave multiphoton photoemission from plasmonic nanostars. Communications Physics, 2018, 1, .	2.0	37

RAMON A ALVAREZ-PUEBLA

#	Article	IF	CITATIONS
109	SERS-active Ag/Au bimetallic nanoalloys on Si/SiOx. Journal of Colloid and Interface Science, 2009, 333, 237-241.	5.0	36
110	Robust raspberry-like metallo-dielectric nanoclusters of critical sizes as SERS substrates. Nanoscale, 2017, 9, 5725-5736.	2.8	36
111	Particle and surface characterization of a natural illite and study of its copper retention. Journal of Colloid and Interface Science, 2005, 285, 41-49.	5.0	35
112	SERS Chiral Recognition and Quantification of Enantiomers through Cyclodextrin Supramolecular Complexation. ChemPhysChem, 2011, 12, 1529-1535.	1.0	35
113	Online Flowing Colloidosomes for Sequential Multiâ€analyte Highâ€Throughput SERS Analysis. Angewandte Chemie - International Edition, 2017, 56, 5565-5569.	7.2	35
114	Smelling, Seeing, Tasting—Old Senses for New Sensing. ACS Nano, 2017, 11, 5217-5222.	7.3	34
115	Characterization of the porous structure of different humic fractions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 256, 129-135.	2.3	33
116	Synthesis and Optical Properties of Homogeneous Nanoshurikens. ACS Photonics, 2014, 1, 1237-1244.	3.2	33
117	SERS efficiencies of micrometric polystyrene beads coated with gold and silver nanoparticles: the effect of nanoparticle size. Journal of Optics (United Kingdom), 2015, 17, 114012.	1.0	33
118	Extraordinarily transparent compact metallic metamaterials. Nature Communications, 2019, 10, 2118.	5.8	32
119	Modeling the adsorption and precipitation processes of Cu(II) on humin. Journal of Colloid and Interface Science, 2004, 277, 55-61.	5.0	31
120	Surface-Enhanced Vibrational Microspectroscopy of Fulvic Acid Micelles. Analytical Chemistry, 2004, 76, 7118-7125.	3.2	31
121	Copper heterogeneous nucleation on a palygorskitic clay: an XRD, EXAFS and molecular modeling study. Applied Clay Science, 2004, 25, 103-110.	2.6	31
122	Microporous Plasmonic Capsules as Stable Molecular Sieves for Direct SERS Quantification of Small Pollutants in Natural Waters. ChemNanoMat, 2019, 5, 46-50.	1.5	31
123	Silverâ€Assisted Synthesis of Gold Nanorods: the Relation between Silver Additive and Iodide Impurities. Small, 2018, 14, e1703879.	5.2	30
124	Robust Au–PEG/PS Microbeads as Optically Stable Platforms for SERS. Small, 2009, 5, 1283-1286.	5.2	29
125	Direct growth of shape controlled TiO2 nanocrystals onto SWCNTs for highly active photocatalytic materials in the visible. Applied Catalysis B: Environmental, 2015, 178, 91-99.	10.8	28
126	SERS assisted ultra-fast peptidic screening: a new tool for drug discovery. Nanoscale, 2012, 4, 113-116.	2.8	27

8

RAMON A ALVAREZ-PUEBLA

#	Article	IF	CITATIONS
127	Colloidal bioplasmonics. Nano Today, 2018, 20, 58-73.	6.2	25
128	Silver coated aluminium microrods as highly colloidal stable SERS platforms. Nanoscale, 2011, 3, 3265.	2.8	24
129	SERS Study of the Controllable Release of Nitric Oxide from Aromatic Nitrosothiols on Bimetallic, Bifunctional Nanoparticles Supported on Carbon Nanotubes. ACS Applied Materials & Interfaces, 2009, 1, 56-59.	4.0	23
130	Real Time Dual-Channel Multiplex SERS Ultradetection. Journal of Physical Chemistry Letters, 2014, 5, 73-79.	2.1	23
131	Optofluidic device for the quantification of circulating tumor cells in breast cancer. Scientific Reports, 2017, 7, 3677.	1.6	23
132	Multiplex SERS Chemosensing of Metal Ions via DNA-Mediated Recognition. Analytical Chemistry, 2019, 91, 11778-11784.	3.2	23
133	Fabrication of stable bimetallic nanostructures on Nafion membranes for optical applications. Journal of Materials Chemistry, 2006, 16, 2921.	6.7	22
134	Retention and induced aggregation of Co(II) on a humic substance: sorption isotherms, infrared absorption, and molecular modeling. Surface Science, 2005, 575, 136-146.	0.8	21
135	High-throughput screening flows along. Nature Chemical Biology, 2007, 3, 247-249.	3.9	21
136	Organized Solid Thin Films of Gold Nanorods with Different Sizes for Surface-Enhanced Raman Scattering Applications. Journal of Physical Chemistry C, 2014, 118, 28095-28100.	1.5	21
137	Surface-Enhanced Raman Scattering Sensing of Transition Metal Ions in Waters. ACS Omega, 2021, 6, 1054-1063.	1.6	21
138	The effect of the silica thickness on the enhanced emission in single particle quantum dots coated with gold nanoparticles. RSC Advances, 2013, 3, 10691.	1.7	19
139	Fabrication of Plasmonic Supercrystals and Their SERS Enhancing Properties. ACS Omega, 2020, 5, 25485-25492.	1.6	19
140	Free-Standing Carbon Nanotube Films as Optical Accumulators for Multiplex SERRS Attomolar Detection. ACS Applied Materials & Interfaces, 2010, 2, 19-22.	4.0	18
141	Silicon particles as trojan horses for potential cancer therapy. Journal of Nanobiotechnology, 2014, 12, 35.	4.2	18
142	SERS Platforms of Plasmonic Hydrophobic Surfaces for Analyte Concentration: Hierarchically Assembled Gold Nanorods on Anodized Aluminum. Particle and Particle Systems Characterization, 2014, 31, 1134-1140.	1.2	18
143	Fabrication and optical enhancing properties of discrete supercrystals. Nanoscale, 2016, 8, 12702-12709.	2.8	17
144	The Structure of Short and Genomic DNA at the Interparticle Junctions of Cationic Nanoparticles. Advanced Materials Interfaces, 2017, 4, 1700724.	1.9	17

RAMON A ALVAREZ-PUEBLA

#	Article	IF	CITATIONS
145	Gold Nanostars: Synthesis, Optical and SERS Analytical Properties. Analysis & Sensing, 2022, 2, .	1.1	16
146	Retention of cobalt on a humin derived from brown coal. Journal of Hazardous Materials, 2006, 135, 122-128.	6.5	15
147	Colloidal synthesis of silicon nanoparticles in molten salts. Nanoscale, 2017, 9, 8157-8163.	2.8	15
148	Aqueous Stable Gold Nanostar/ZIFâ€8 Nanocomposites for Lightâ€Triggered Release of Active Cargo Inside Living Cells. Angewandte Chemie, 2019, 131, 7152-7156.	1.6	15
149	SERS Classification of Highly Related Performance Enhancers. ChemMedChem, 2007, 2, 1165-1167.	1.6	14
150	Widefield SERS for Highâ€Throughput Nanoparticle Screening. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
151	Self-encoded polymer beads for microarray technologies. Sensors and Actuators B: Chemical, 2007, 125, 357-359.	4.0	13
152	Multiplex pathogen detection based on spatially addressable microarrays of barcoded resins. Biotechnology Journal, 2008, 3, 948-953.	1.8	13
153	Synthesis of sulfur-containing aryl and heteroaryl vinyls via Suzuki–Miyaura cross-coupling for the preparation of SERS-active polymers. Tetrahedron Letters, 2009, 50, 5467-5469.	0.7	13
154	Analysis of the SERS Spectrum by Theoretical Methodology: Evaluating a Classical Dipole Model and the Detuning of the Excitation Frequency. Journal of Physical Chemistry A, 2013, 117, 4584-4590.	1.1	12
155	Macroscale Plasmonic Substrates for Highly Sensitive Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie, 2013, 125, 6587-6591.	1.6	12
156	Paper-based plasmonic substrates as surface-enhanced Raman scattering spectroscopy platforms for cell culture applications. Materials Today Bio, 2021, 11, 100125.	2.6	12
157	Plasmonic-polymer hybrid hollow microbeads for surface-enhanced Raman scattering (SERS) ultradetection. Journal of Colloid and Interface Science, 2015, 460, 128-134.	5.0	11
158	Positively-charged plasmonic nanostructures for SERS sensing applications. RSC Advances, 2021, 12, 845-859.	1.7	11
159	Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. , 2018, , 1-92.		10
160	Boosting the analytical properties of gold nanostars by single particle confinement into yolk porous silica shells. Nanoscale, 2019, 11, 21872-21879.	2.8	10
161	Structural Recognition of Triple-Stranded DNA by Surface-Enhanced Raman Spectroscopy. Nanomaterials, 2021, 11, 326.	1.9	10
162	A computational approach to the synthesis of 1,3,5-thiadiazinane-2-thiones in aqueous medium: theoretical evidence for water-promoted heterocyclization. Journal of Molecular Modeling, 2008, 14, 641-647.	0.8	9

#	Article	IF	CITATIONS
163	Surface-enhanced Raman spectroscopy (SERS) characterisation of abasic sites in DNA duplexes. Analyst, The, 2019, 144, 6862-6865.	1.7	9
164	Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1307-1317.	1.4	8
165	Conformational SERS Classification of <i>Kâ€Ras</i> Point Mutations for Cancer Diagnostics. Angewandte Chemie, 2017, 129, 2421-2425.	1.6	7
166	Online Flowing Colloidosomes for Sequential Multiâ€analyte Highâ€Throughput SERS Analysis. Angewandte Chemie, 2017, 129, 5657-5661.	1.6	7
167	The Role of Nanoscience in Cancer Diagnosis. , 2018, , 177-197.		7
168	Laser-protective soft contact lenses: Keeping an eye on the eye through plasmonics. Applied Materials Today, 2019, 15, 1-5.	2.3	7
169	Gold Nanostars: Synthesis, Optical and SERS Analytical Properties. Analysis & Sensing, 2022, 2, .	1.1	7
170	Adaptive metabolic pattern biomarker for disease monitoring and staging of lung cancer with liquid biopsy. Npj Precision Oncology, 2018, 2, 16.	2.3	6
171	Iron-Assisted Synthesis of Highly Monodispersed and Magnetic Citrate-Stabilized Small Silver Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 3270-3276.	1.5	6
172	Targets and Tools: Nucleic Acids for Surface-Enhanced Raman Spectroscopy. Biosensors, 2021, 11, 230.	2.3	6
173	Optical Enhancing Properties in Layer-by-Layer Films of Dendrimer and Gold Nanoparticles. Macromolecular Symposia, 2006, 245-246, 325-329.	0.4	5
174	Surface-Enhanced Raman Scattering Detection of Nucleic Acids Exhibiting Sterically Accessible Guanines Using Ruthenium-Polypyridyl Reagents. Journal of Physical Chemistry Letters, 2020, 11, 7218-7223.	2.1	5
175	Fabrication of colloidal platforms for surfaceâ€enhanced Raman spectroscopy on optically inert templates. Journal of Raman Spectroscopy, 2021, 52, 554-562.	1.2	5
176	Silver melamine thin film as a flexible platform for SERS analysis. Nanoscale, 2021, 13, 7375-7380.	2.8	5
177	Fabrication and Characterization of Spectroscopically Encoded Core-shell Nanoparticle-polymer Nanocomposite. Materials Research Society Symposia Proceedings, 2007, 1054, 14.	0.1	4
178	Spontaneous Formation of Cold-Welded Plasmonic Nanoassemblies with Refracted Shapes for Intense Raman Scattering. Langmuir, 2019, 35, 4110-4116.	1.6	4
179	Plasmonic foam platforms for air quality monitoring. Nanoscale, 2021, 13, 1738-1744.	2.8	4
180	Gold-spiked coating of silver particles through cold nanowelding. Nanoscale, 2021, 13, 4530-4536.	2.8	4

#	Article	IF	CITATIONS
181	Microfluidic device with dual-channel fluorescence acquisition for quantification/identification of cancer cells. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	3
182	Metabolic pathway for the universal fluorescent recognition of tumor cells. Oncotarget, 2017, 8, 76108-76115.	0.8	3
183	SERS-Encoded Particles. , 2012, , 33-49.		2
184	Inside Cover: Spiked Gold Beads as Substrates for Single-Particle SERS (ChemPhysChem 10/2012). ChemPhysChem, 2012, 13, 2422-2422.	1.0	2
185	Special issue on surface-enhanced Raman spectroscopy. Journal of Optics (United Kingdom), 2015, 17, 110201.	1.0	2
186	Introduction to advances in plasmonics and its applications. Nanoscale, 2021, 13, 5935-5936.	2.8	2
187	SERS optical accumulators as unified nanoplatforms for tear sampling and sensing in soft contact lenses. Nanoscale, 2022, 14, 7991-7999.	2.8	2
188	Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 50 462 Td
189	Innentitelbild: Conformational SERS Classification of <i>Kâ€Ras</i> Point Mutations for Cancer Diagnostics (Angew. Chem. 9/2017). Angewandte Chemie, 2017, 129, 2256-2256.	1.6	1
190	Surface-enhanced Raman scattering (SERS) sensing of nucleic acids. Frontiers of Nanoscience, 2020, , 9-23.	0.3	1
191	Fabrication of Hybrid Silver Microstructures from Vermiculite Templates as SERS Substrates. Nanomaterials, 2020, 10, 481.	1.9	1
192	Surface-enhanced Raman scattering chemosensing of proteins. , 2020, , 553-567.		1
193	Design and fabrication of bimetallic plasmonic colloids through cold nanowelding. Nanoscale, 2022, 14, 9439-9447.	2.8	1
194	Combining DLS, XRD, SEM-EDAX and EXAFS in the study of Zn(II) retention on a palygorskitic clay. Clay Minerals, 2005, 40, 205-212.	0.2	0
195	Deconvolution of Self-encoded Polymer Beads in Random Microarrays for Antigen Biosensing by Raman Spectroscopy. Materials Research Society Symposia Proceedings, 2007, 1024, 1.	0.1	0
196	Synthesis and Characterization of Spectroscopically Encoded Nanocomposites. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	0
197	SERS-Based Ultrasensitive Detection with Tips-shaped Anisotropic Particles. , 2010, , .		0

Medical Applications of Plasmonic Nanoparticles. Else-Kröner-Fresenius-Symposia, 2011, , 106-115. 0.1 0

#	Article	IF	CITATIONS
199	Hierarchical Materials: SERS Platforms of Plasmonic Hydrophobic Surfaces for Analyte Concentration: Hierarchically Assembled Gold Nanorods on Anodized Aluminum (Part. Part. Syst.) Tj ETQq1 1 0.7	8443314 rgB	T¢Overlock
200	Plasmonic Macroscopic Structures: from linear assemblies to 3D structured super-crystals. Journal of Physics: Conference Series, 2018, 1092, 012113.	0.3	0
201	Synthesis of SERS-encoded nanotags: From single nanoparticles to highly brilliant complex core-satellite structures. Journal of Physics: Conference Series, 2020, 1461, 012127.	0.3	0
202	Widefield SERS for Highâ€Throughput Nanoparticle Screening. Angewandte Chemie, 0, , .	1.6	0
203	Plasmonic Azobenzene Chemoreporter for Surface-Enhanced Raman Scattering Detection of Biothiols. Biosensors, 2022, 12, 267.	2.3	0