Rodney J Devenish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/946512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disruption of the Burkholderia pseudomallei two-component signal transduction system BbeR-BbeS leads to increased extracellular DNA secretion and altered biofilm formation. Veterinary Microbiology, 2020, 242, 108603.	1.9	2
2	Inhibition of bioenergetics provides novel insights into recruitment of <scp>PINK</scp> 1â€dependent neuronal mitophagy. Journal of Neurochemistry, 2019, 149, 269-283.	3.9	10
3	Impaired placental autophagy in placental malaria. PLoS ONE, 2017, 12, e0187291.	2.5	22
4	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
5	Evidence for the recruitment of autophagic vesicles in human brain after stroke. Neurochemistry International, 2016, 96, 62-68.	3.8	16
6	Analysis of the Relative Contribution of Phagocytosis, <scp>LC</scp> 3â€Associated Phagocytosis, and Canonical Autophagy During <i>Helicobacter pylori</i> Infection of Macrophages. Helicobacter, 2015, 20, 449-459.	3.5	15
7	The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE. PLoS ONE, 2015, 10, e0143916.	2.5	5
8	Autophagy: Starvation Relieves Transcriptional Repression of ATG Genes. Current Biology, 2015, 25, R238-R240.	3.9	8
9	Burkholderia pseudomallei Type III Secretion System Cluster 3 ATPase BsaS, a Chemotherapeutic Target for Small-Molecule ATPase Inhibitors. Infection and Immunity, 2015, 83, 1276-1285.	2.2	16
10	Autophagy and Burkholderia. Immunology and Cell Biology, 2015, 93, 18-24.	2.3	16
11	X-Ray Crystal Structure and Properties of Phanta, a Weakly Fluorescent Photochromic GFP-Like Protein. PLoS ONE, 2015, 10, e0123338.	2.5	2
12	Autophagy in Development, Cell Differentiation, and Homeodynamics: From Molecular Mechanisms to Diseases and Pathophysiology. BioMed Research International, 2014, 2014, 1-2.	1.9	11
13	Beclin 1 Is Required for Starvation-Enhanced, but Not Rapamycin-Enhanced, LC3-Associated Phagocytosis of Burkholderia pseudomallei in RAW 264.7 Cells. Infection and Immunity, 2013, 81, 271-277.	2.2	26
14	Evolutionary Analysis of Burkholderia pseudomallei Identifies Putative Novel Virulence Genes, Including a Microbial Regulator of Host Cell Autophagy. Journal of Bacteriology, 2013, 195, 5487-5498.	2.2	16
15	The impact of autophagic processes on the intracellular fate of <i><i>Helicobacter pylori</i></i> . Autophagy, 2013, 9, 639-652.	9.1	51
16	LC3-Associated Phagocytosis (LAP): Connections with Host Autophagy. Cells, 2012, 1, 396-408.	4.1	100
17	Receptor protein complexes are in control of autophagy. Autophagy, 2012, 8, 1701-1705.	9.1	77
18	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122

RODNEY J DEVENISH

#	Article	IF	CITATIONS
19	Autophagy mechanism and physiological relevance brewed from yeast studies. Frontiers in Bioscience - Scholar, 2012, S4, 1354-1363.	2.1	24
20	Strategies for Intracellular Survival of Burkholderia pseudomallei. Frontiers in Microbiology, 2011, 2, 170.	3.5	106
21	The Burkholderia pseudomallei Type III Secretion System and BopA Are Required for Evasion of LC3-Associated Phagocytosis. PLoS ONE, 2011, 6, e17852.	2.5	140
22	Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy, 2011, 7, 673-682.	9.1	426
23	Role for the Burkholderia pseudomallei Type Three Secretion System Cluster 1 bpscN Gene in Virulence. Infection and Immunity, 2011, 79, 3659-3664.	2.2	28
24	The intricacy of nuclear membrane dynamics during nucleophagy. Nucleus, 2010, 1, 213-223.	2.2	69
25	Chapter 9 Monitoring Organelle Turnover in Yeast Using Fluorescent Protein Tags. Methods in Enzymology, 2008, 451, 109-131.	1.0	11
26	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
27	The Structure and Function of Mitochondrial F1F0â€ATP Synthases. International Review of Cell and Molecular Biology, 2008, 267, 1-58.	3.2	95
28	Stimulation of autophagy suppresses the intracellular survival of <i>Burkholderia pseudomallei</i> in mammalian cell lines. Autophagy, 2008, 4, 744-753.	9.1	134
29	Autophagy and Vacuole Homeostasis: A Case for Self-Degradation?. Autophagy, 2007, 3, 417-421.	9.1	39
30	Topology and proximity relationships of yeast mitochondrial ATP synthase subunit 8 determined by unique introduced cysteine residues. FEBS Journal, 2000, 267, 6443-6451.	0.2	20
31	The oligomycin axis of mitochondrial ATP synthase: OSCP and the proton channel. Journal of Bioenergetics and Biomembranes, 2000, 32, 507-515.	2.3	96
32	Modulation at a distance of proton conductance through the Saccharomyces cerevisiae mitochondrial F1F0-ATP synthase by variants of the oligomycin sensitivity-conferring protein containing substitutions near the C-terminus. Journal of Bioenergetics and Biomembranes, 2000, 32, 595-607.	2.3	10
33	A cytochromec-GFP fusion is not released from mitochondria into the cytoplasm upon expression of Bax in yeast cells. FEBS Letters, 2000, 471, 235-239.	2.8	44
34	Bioenergetic and structural consequences of allotopic expression of subunit 8 of yeast mitochondrial ATP synthase. The hydrophobic character of residues 23 and 24 is essential for maximal activity and structural stability of the enzyme complex. FEBS Journal, 1999, 261, 444-451.	0.2	22
35	Identification of subunit g of yeast mitochondrial F1F0-ATP synthase, a protein required for maximal activity of cytochrome c oxidase. FEBS Journal, 1999, 262, 315-323.	0.2	49
36	A novel fluorescent marker for assembled mitochondria ATP synthase of yeast. FEBS Letters, 1997, 411, 97-101.	2.8	24

RODNEY J DEVENISH

#	Article	IF	CITATIONS
37	Nonâ€functional variants of yeast mitochondrial ATP synthase subunit 8 that assemble into the complex. IUBMB Life, 1996, 39, 253-260.	3.4	6
38	Relationship of Subunit 8 of Yeast ATP Synthase and the Inner Mitochondrial Membrane. FEBS Journal, 1995, 227, 745-752.	0.2	0
39	Expression of IFN A genes in subpopulations of peripheral blood cells. British Journal of Haematology, 1994, 86, 717-725.	2.5	22
40	Detection of interferon-alpha expression by PCR in patients with chronic hepatitis C and hepatitis non-A, non-B. Journal of Gastroenterology and Hepatology (Australia), 1994, 9, 373-380.	2.8	3
41	Post-transcriptional regulation of interferon-alpha 4 subtype production by lymphoblastoid cells. Hematological Oncology, 1993, 11, 7-21.	1.7	15
42	Duplication of leader sequence for protein targeting to mitochondria leads to increased import efficiency. FEBS Letters, 1991, 282, 425-430.	2.8	52
43	The C-terminal positively charged region of subunit 8 of yeast mitochondrial ATP synthase is required for efficient assembly of this subunit into the membrane F0 sector. FEBS Journal, 1991, 199, 203-209.	0.2	28
44	Assembly of imported subunit 8 into the ATP synthase complex of isolated yeast mitochondria. FEBS Journal, 1990, 188, 421-429.	0.2	37
45	Identification of a 66 KDa protein associated with yeast mitochondrial ATP synthase as heat shock protein hsp60. FEBS Letters, 1990, 268, 265-268.	2.8	24
46	Studies on the import into mitochondria of yeast ATP synthase subunits 8 and 9 encoded by artificial nuclear genes. FEBS Letters, 1988, 236, 501-505.	2.8	38