Yoshihide Wada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9465051/publications.pdf

Version: 2024-02-01

185 papers 28,627 citations

4658 85 h-index 163 g-index

238 all docs 238 docs citations

times ranked

238

21679 citing authors

#	Article	IF	Citations
1	Ground water and climate change. Nature Climate Change, 2013, 3, 322-329.	18.8	1,513
2	Global depletion of groundwater resources. Geophysical Research Letters, 2010, 37, .	4.0	1,378
3	Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3245-3250.	7.1	1,282
4	Water balance of global aquifers revealed by groundwater footprint. Nature, 2012, 488, 197-200.	27.8	1,058
5	Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3251-3256.	7.1	971
6	Importance and vulnerability of the world's water towers. Nature, 2020, 577, 364-369.	27.8	885
7	Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3239-3244.	7.1	795
8	Groundwater depletion embedded in international food trade. Nature, 2017, 543, 700-704.	27.8	612
9	Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3262-3267.	7.1	583
10	Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth System Dynamics, 2014, 5, 15-40.	7.1	549
11	Water scarcity assessments in the past, present, and future. Earth's Future, 2017, 5, 545-559.	6. 3	545
12	Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resources Research, 2012, 48, .	4.2	517
13	Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications, 2020, 11, 3044.	12.8	467
14	Global sea-level budget 1993–present. Earth System Science Data, 2018, 10, 1551-1590.	9.9	409
15	Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 2016, 9, 175-222.	3.6	379
16	Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1080-E1089.	7.1	376
17	Global monthly water stress: 1. Water balance and water availability. Water Resources Research, 2011, 47, .	4.2	350
18	Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 2021, 11, 226-233.	18.8	345

#	Article	IF	Citations
19	Global monthly water stress: 2. Water demand and severity of water stress. Water Resources Research, 2011, 47, .	4.2	342
20	Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience, 2017, 10, 109-117.	12.9	334
21	Sustainability of global water use: past reconstruction and future projections. Environmental Research Letters, 2014, 9, 104003.	5.2	312
22	PCR-GLOBWBÂ2: a 5 arcmin global hydrological and water resources model. Geoscientific Model Development, 2018, 11, 2429-2453.	3.6	307
23	Multimodel projections and uncertainties of irrigation water demand under climate change. Geophysical Research Letters, 2013, 40, 4626-4632.	4.0	302
24	Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nature Communications, 2017, 8, 15697.	12.8	287
25	The imbalance of the Asian water tower. Nature Reviews Earth & Environment, 2022, 3, 618-632.	29.7	286
26	Recent global decline in endorheic basin water storages. Nature Geoscience, 2018, 11, 926-932.	12.9	282
27	Multifaceted characteristics of dryland aridity changes in a warming world. Nature Reviews Earth & Environment, 2021, 2, 232-250.	29.7	281
28	Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrology and Earth System Sciences, 2011, 15, 3785-3808.	4.9	275
29	Global assessment of water challenges under uncertainty in water scarcity projections. Nature Sustainability, 2018, 1, 486-494.	23.7	274
30	Human water consumption intensifies hydrological drought worldwide. Environmental Research Letters, 2013, 8, 034036.	5.2	265
31	Past and future contribution of global groundwater depletion to seaâ€level rise. Geophysical Research Letters, 2012, 39, .	4.0	258
32	South-to-North Water Diversion stabilizing Beijing's groundwater levels. Nature Communications, 2020, 11, 3665.	12.8	254
33	Non-renewable groundwater use and groundwater depletion: a review. Environmental Research Letters, 2019, 14, 063002.	5.2	248
34	The pronounced seasonality of global groundwater recharge. Water Resources Research, 2014, 50, 8845-8867.	4.2	246
35	First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3257-3261.	7.1	246
36	Human and climate impacts on the 21st century hydrological drought. Journal of Hydrology, 2015, 526, 208-220.	5.4	230

#	Article	IF	CITATIONS
37	Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 "Level of water stress― Science of the Total Environment, 2018, 613-614, 218-232.	8.0	223
38	Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nature Geoscience, 2017, 10, 425-429.	12.9	210
39	Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer?. Scientific Reports, 2016, 6, 24398.	3.3	202
40	Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin. Remote Sensing of Environment, 2015, 168, 177-193.	11.0	201
41	Twentieth-Century Global-Mean Sea Level Rise: Is the Whole Greater than the Sum of the Parts?. Journal of Climate, 2013, 26, 4476-4499.	3.2	197
42	Global water scarcity including surface water quality and expansions of clean water technologies. Environmental Research Letters, 2021, 16, 024020.	5.2	192
43	Quality matters for water scarcity. Nature Geoscience, 2017, 10, 800-802.	12.9	181
44	Urban growth and water access in sub-Saharan Africa: Progress, challenges, and emerging research directions. Science of the Total Environment, 2017, 607-608, 497-508.	8.0	174
45	Human–water interface in hydrological modelling: current status and future directions. Hydrology and Earth System Sciences, 2017, 21, 4169-4193.	4.9	171
46	Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature, 2019, 572, 230-234.	27.8	168
47	State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 2019, 10, 1005.	12.8	168
48	Global exposure and vulnerability to multi-sector development and climate change hotspots. Environmental Research Letters, 2018, 13, 055012.	5.2	162
49	The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability, 2019, 2, 499-507.	23.7	161
50	Increasing dependence of lowland populations on mountain water resources. Nature Sustainability, 2020, 3, 917-928.	23.7	156
51	Deceleration of China's human water use and its key drivers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7702-7711.	7.1	155
52	Measuring global water security towards sustainable development goals. Environmental Research Letters, 2016, 11, 124015.	5.2	153
53	LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project – aims, setup and expected outcome. Geoscientific Model Development, 2016, 9, 2809-2832.	3.6	152
54	Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications, 2020, 11, 3710.	12.8	151

#	Article	IF	CITATIONS
55	Intergenerational inequities in exposure to climate extremes. Science, 2021, 374, 158-160.	12.6	148
56	Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009). Advances in Water Resources, 2016, 87, 29-41.	3.8	138
57	Crossâ€scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change, 2017, 141, 561-576.	3.6	137
58	Highâ€resolution modeling of human and climate impacts on global water resources. Journal of Advances in Modeling Earth Systems, 2016, 8, 735-763.	3.8	132
59	Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2842-2847.	7.1	128
60	Wedge approach to water stress. Nature Geoscience, 2014, 7, 615-617.	12.9	126
61	Water stress in global transboundary river basins: significance of upstream water use on downstream stress. Environmental Research Letters, 2016, 11, 014002.	5.2	125
62	The aridity Index under global warming. Environmental Research Letters, 2019, 14, 124006.	5.2	124
63	Evaluation of the Global Mean Sea Level Budget between 1993 and 2014. Surveys in Geophysics, 2017, 38, 309-327.	4.6	122
64	A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrology and Earth System Sciences, 2014, 18, 2955-2973.	4.9	121
65	Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nature Communications, 2020, 11, 947.	12.8	121
66	Groundwater depletion causing reduction of baseflow triggering Ganges river summer drying. Scientific Reports, 2018, 8, 12049.	3.3	116
67	Downstream Yangtze River levels impacted by Three Gorges Dam. Environmental Research Letters, 2013, 8, 044012.	5.2	114
68	Changing mechanism of global water scarcity events: Impacts of socioeconomic changes and inter-annual hydro-climatic variability. Global Environmental Change, 2015, 32, 18-29.	7.8	112
69	High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth System Science Data, 2019, 11, 1603-1627.	9.9	112
70	Recent progresses in incorporating human land–water management into global land surface models toward their integration into Earth system models. Wiley Interdisciplinary Reviews: Water, 2016, 3, 548-574.	6.5	110
71	Global hydrological droughts in the 21st century under a changing hydrological regime. Earth System Dynamics, 2015, 6, 1-15.	7.1	109
72	Groundwater rejuvenation in parts of India influenced by water-policy change implementation. Scientific Reports, 2017, 7, 7453.	3.3	109

#	Article	IF	Citations
73	Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environmental Research Letters, 2018, 13, 015006.	5.2	109
74	Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns. Hydrology and Earth System Sciences, 2018, 22, 2117-2133.	4.9	106
75	The critical role of the routing scheme in simulating peak river discharge in global hydrological models. Environmental Research Letters, 2017, 12, 075003.	5.2	105
76	Fate of water pumped from underground and contributions to sea-level rise. Nature Climate Change, 2016, 6, 777-780.	18.8	103
77	Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Global Environmental Change, 2016, 40, 156-170.	7.8	103
78	Dynamic attribution of global water demand to surface water and groundwater resources: Effects of abstractions and return flows on river discharges. Advances in Water Resources, 2014, 64, 21-33.	3.8	102
79	Modelling Freshwater Resources at the Global Scale: Challenges and Prospects. Surveys in Geophysics, 2016, 37, 195-221.	4.6	100
80	Intensification of hydrological drought in California by human water management. Geophysical Research Letters, 2017, 44, 1777-1785.	4.0	99
81	The Water Planetary Boundary: Interrogation and Revision. One Earth, 2020, 2, 223-234.	6.8	98
82	Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability. Scientific Reports, 2017, 7, 6282.	3.3	92
83	Human impact parameterizations in global hydrological models improve estimates of monthly discharges and hydrological extremes: a multi-model validation study. Environmental Research Letters, 2018, 13, 055008.	5.2	91
84	Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE. Journal of Hydrology, 2017, 553, 105-118.	5.4	90
85	A large-scale simulation model to assess karstic groundwater recharge over Europe and the Mediterranean. Geoscientific Model Development, 2015, 8, 1729-1746.	3.6	89
86	A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales. Surveys in Geophysics, 2017, 38, 385-406.	4.6	88
87	Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resources Research, 2020, 56, e2019WR024957.	4.2	86
88	Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts. Environmental Research Letters, 2018, 13, 065015.	5.2	85
89	Assessment of Future Water Scarcity at Different Spatial and Temporal Scales of the Brahmaputra River Basin. Water Resources Management, 2014, 28, 999-1012.	3.9	81
90	Global multi-pollutant modelling of water quality: scientific challenges and future directions. Current Opinion in Environmental Sustainability, 2019, 36, 116-125.	6.3	80

#	Article	IF	CITATIONS
91	Existing and new arrangements of pumped-hydro storage plants. Renewable and Sustainable Energy Reviews, 2020, 129, 109914.	16.4	80
92	Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects. Surveys in Geophysics, 2016, 37, 419-451.	4.6	77
93	The timing of unprecedented hydrological drought under climate change. Nature Communications, 2022, 13, .	12.8	77
94	Little impact of the <scp>T</scp> hree <scp>G</scp> orges <scp>D</scp> am on recent decadal lake decline across <scp>C</scp> hina's <scp>Y</scp> angtze <scp>P</scp> lain. Water Resources Research, 2017, 53, 3854-3877.	4.2	75
95	Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP. Earth System Dynamics, 2013, 4, 359-374.	7.1	74
96	Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies. Energy, 2020, 190, 116419.	8.8	74
97	Factors Other Than Climate Change, Main Drivers of 2014/15 Water Shortage in Southeast Brazil. Bulletin of the American Meteorological Society, 2015, 96, S35-S40.	3.3	73
98	Strong Linkage Between Precipitation Intensity and Monsoon Season Groundwater Recharge in India. Geophysical Research Letters, 2018, 45, 5536-5544.	4.0	73
99	Highâ€Resolution Global Water Temperature Modeling. Water Resources Research, 2019, 55, 2760-2778.	4.2	70
100	Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales. Earth's Future, 2020, 8, e2020EF001616.	6.3	69
101	Integrating the Water Planetary Boundary With Water Management From Local to Global Scales. Earth's Future, 2020, 8, e2019EF001377.	6.3	65
102	Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study. Hydrology and Earth System Sciences, 2021, 25, 787-810.	4.9	65
103	Towards a global water scarcity risk assessment framework: incorporation of probability distributions and hydro-climatic variability. Environmental Research Letters, 2016, 11, 024006.	5.2	63
104	Closing the sea level budget on a regional scale: Trends and variability on the Northwestern European continental shelf. Geophysical Research Letters, 2016, 43, 10864-10872.	4.0	61
105	Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geoscientific Model Development, 2020, 13, 3267-3298.	3.6	60
106	Recent Changes in Land Water Storage and its Contribution to Sea Level Variations. Surveys in Geophysics, 2017, 38, 131-152.	4.6	59
107	Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint. Environmental Research Letters, 2013, 8, 044010.	5.2	58
108	Integrated assessment of resource-energy-environment nexus in China's iron and steel industry. Journal of Cleaner Production, 2019, 232, 235-249.	9.3	58

7

#	Article	IF	Citations
109	Aqueduct 3.0: Updated Decision-Relevant Global Water Risk Indicators. , 0, , .		58
110	GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations. Earth System Science Data, 2022, 14, 1869-1899.	9.9	58
111	A Continentalâ€Scale Hydroeconomic Model for Integrating Waterâ€Energyâ€Land Nexus Solutions. Water Resources Research, 2018, 54, 7511-7533.	4.2	57
112	Global Agricultural Water Scarcity Assessment Incorporating Blue and Green Water Availability Under Future Climate Change. Earth's Future, 2022, 10, .	6.3	55
113	Co-designing Indus Water-Energy-Land Futures. One Earth, 2019, 1, 185-194.	6.8	54
114	The Shadow Price of Irrigation Water in Major Groundwaterâ€Depleting Countries. Water Resources Research, 2019, 55, 4266-4287.	4.2	54
115	Irrigation of biomass plantations may globally increase water stress more than climate change. Nature Communications, 2021, 12, 1512.	12.8	54
116	Risk of groundwater contamination widely underestimated because of fast flow into aquifers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	53
117	Multiâ€model and multiâ€scenario assessments of Asian water futures: The Water Futures and Solutions (WFaS) initiative. Earth's Future, 2017, 5, 823-852.	6.3	50
118	Intercomparison of global river discharge simulations focusing on dam operation—multiple models analysis in two case-study river basins, Missouri–Mississippi and Green–Colorado. Environmental Research Letters, 2017, 12, 055002.	5.2	49
119	Analysing trade-offs between SDGs related to water quality using salinity as a marker. Current Opinion in Environmental Sustainability, 2019, 36, 96-104.	6.3	49
120	Assessment of transboundary aquifers of the worldâ€"vulnerability arising from human water use. Environmental Research Letters, 2013, 8, 024003.	5.2	48
121	Balancing clean water-climate change mitigation trade-offs. Environmental Research Letters, 2019, 14, 014009.	5.2	48
122	Future Transboundary Water Stress and Its Drivers Under Climate Change: A Global Study. Earth's Future, 2020, 8, e2019EF001321.	6.3	48
123	Hotspots for social and ecological impacts from freshwater stress and storage loss. Nature Communications, 2022, 13, 439.	12.8	45
124	Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide. Current Opinion in Environmental Sustainability, 2019, 36, 39-48.	6.3	41
125	Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication. Geoscientific Model Development, 2021, 14, 3843-3878.	3.6	41
126	Historical and future changes in global flood magnitude – evidence from a model–observation investigation. Hydrology and Earth System Sciences, 2020, 24, 1543-1564.	4.9	40

#	Article	IF	Citations
127	Solar and wind energy enhances drought resilience and groundwater sustainability. Nature Communications, 2019, 10, 4893.	12.8	39
128	Efficient basin scale filtering of GRACE satellite products. Remote Sensing of Environment, 2018, 204, 76-93.	11.0	38
129	Evapotranspiration simulations in ISIMIP2aâ€"Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environmental Research Letters, 2018, 13, 075001.	5.2	38
130	Vulnerability of existing and planned coal-fired power plants in Developing Asia to changes in climate and water resources. Energy and Environmental Science, 2019, 12, 3164-3181.	30.8	38
131	Cost-effective management of coastal eutrophication: A case study for the Yangtze river basin. Resources, Conservation and Recycling, 2020, 154, 104635.	10.8	38
132	GMD perspective: The quest to improve the evaluation of groundwater representation in continental to global-scale models. Geoscientific Model Development, 2021, 14, 7545-7571.	3.6	38
133	Comparing tide gauge observations to regional patterns of sea-level change (1961–2003). Earth System Dynamics, 2014, 5, 243-255.	7.1	37
134	Human Water Use Impacts on the Strength of the Continental Sink for Atmospheric Water. Geophysical Research Letters, 2018, 45, 4068-4076.	4.0	36
135	Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models. Environmental Modelling and Software, 2019, 114, 112-128.	4.5	36
136	A global near-real-time soil moisture index monitor for food security using integrated SMOS and SMAP. Remote Sensing of Environment, 2020, 246, 111864.	11.0	35
137	Multimodel assessments of human and climate impacts on mean annual streamflow in China. Hydrology and Earth System Sciences, 2019, 23, 1245-1261.	4.9	34
138	Model inter-comparison design for large-scale water quality models. Current Opinion in Environmental Sustainability, 2019, 36, 59-67.	6.3	34
139	Human Intervention Will Stabilize Groundwater Storage Across the North China Plain. Water Resources Research, 2022, 58, .	4.2	34
140	Multimodel uncertainty changes in simulated river flows induced by human impact parameterizations. Environmental Research Letters, 2017, 12, 025009.	5.2	33
141	Global implications of regional grain production through virtual water trade. Science of the Total Environment, 2019, 659, 807-820.	8.0	33
142	Using the Budyko Framework for Calibrating a Global Hydrological Model. Water Resources Research, 2020, 56, e2019WR026280.	4.2	33
143	Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale. Hydrology and Earth System Sciences, 2015, 19, 4081-4098.	4.9	32
144	A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation. Journal of Advances in Modeling Earth Systems, 2018, 10, 2-17.	3.8	31

#	Article	IF	CITATIONS
145	The NExus Solutions Tool (NEST) v1.0: an open platform for optimizing multi-scale energy–water–land system transformations. Geoscientific Model Development, 2020, 13, 1095-1121.	3.6	31
146	Decadal predictability of river discharge with climate oscillations over the 20th and early 21st century. Geophysical Research Letters, 2015, 42, 10,689.	4.0	30
147	Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and Southâ€ŧoâ€North Water Diversion. Earth's Future, 2020, 8, e2020EF001492.	6.3	30
148	Total land water storage change over 2003–2013 estimated from a global mass budget approach. Environmental Research Letters, 2015, 10, 124010.	5.2	27
149	How downstream sub-basins depend on upstream inflows to avoid scarcity: typology and global analysis of transboundary rivers. Hydrology and Earth System Sciences, 2018, 22, 2795-2809.	4.9	27
150	A Spatially Explicit Assessment of Growing Water Stress in China From the Past to the Future. Earth's Future, 2019, 7, 1027-1043.	6.3	27
151	A nexus modeling framework for assessing water scarcity solutions. Current Opinion in Environmental Sustainability, 2019, 40, 72-80.	6.3	27
152	GRACE satellite observations reveal the severity of recent water over-consumption in the United States. Scientific Reports, 2017, 7, 8723.	3.3	25
153	How evaluation of global hydrological models can help to improve credibility of river discharge projections under climate change. Climatic Change, 2020, 163, 1353-1377.	3.6	25
154	Achieving carbon neutrality enables China to attain its industrial water-use target. One Earth, 2022, 5, 188-200.	6.8	25
155	Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?. Water (Switzerland), 2019, 11, 2223.	2.7	24
156	Divergent Causes of Terrestrial Water Storage Decline Between Drylands and Humid Regions Globally. Geophysical Research Letters, 2021, 48, .	4.0	23
157	Linking groundwater use and stress to specific crops using the groundwater footprint in the Central Valley and High Plains aquifer systems, U.S Water Resources Research, 2014, 50, 4953-4973.	4.2	22
158	Hydropower and seasonal pumped hydropower storage in the Indus basin:pros and cons. Journal of Energy Storage, 2021, 41, 102916.	8.1	21
159	Groundwater Depletion Embedded in Domestic Transfers and International Exports of the United States. Water Resources Research, 2020, 56, e2019WR024986.	4.2	19
160	Performance evaluation of global hydrological models in six large Pan-Arctic watersheds. Climatic Change, 2020, 163, 1329-1351.	3.6	19
161	Global Water Scarcity Assessment Incorporating Green Water in Crop Production. Water Resources Research, 2022, 58, .	4.2	19
162	A Two-Stage Stochastic Optimization for Robust Operation of Multipurpose Reservoirs. Water Resources Management, 2019, 33, 3815-3830.	3.9	18

#	Article	IF	Citations
163	Increasing nitrogen export to sea: A scenario analysis for the Indus River. Science of the Total Environment, 2019, 694, 133629.	8.0	18
164	A developing food crisis and potential refugee movements. Nature Sustainability, 2018, 1, 380-382.	23.7	16
165	A Multivariate Conditional Probability Ratio Framework for the Detection and Attribution of Compound Climate Extremes. Geophysical Research Letters, 2021, 48, e2021GL094361.	4.0	16
166	Remotely sensed reservoir water storage dynamicsÂ(1984–2015) and the influence of climate variability and management at a global scale. Hydrology and Earth System Sciences, 2022, 26, 3785-3803.	4.9	15
167	Giving Legs to Handprint Thinking: Foundations for Evaluating the Good We Do. Earth's Future, 2020, 8, e2019EF001422.	6.3	11
168	Impact of climate indicators on continentalâ€scale potential groundwater recharge in Africa. Hydrological Processes, 2016, 30, 3420-3433.	2.6	10
169	Factors Other Than Climate Change, Main Drivers of 2014/15 Water Shortage in Southeast Brazil. Bulletin of the American Meteorological Society, 2015, 96, S35-S40.	3.3	10
170	Volume versus value of crop-related water footprints and virtual water flows: A case study for the Yellow River Basin. Journal of Hydrology, 2022, 608, 127674.	5.4	9
171	Trends and interannual variability of mass and steric sea level in the <scp>T</scp> ropical <scp>A</scp> sian <scp>S</scp> eas. Journal of Geophysical Research: Oceans, 2017, 122, 6254-6276.	2.6	8
172	Quantifying the impact of diet quality on hunger and undernutrition. Journal of Cleaner Production, 2018, 205, 432-446.	9.3	8
173	Intensified Likelihood of Concurrent Warm and Dry Months Attributed to Anthropogenic Climate Change. Water Resources Research, 2022, 58, .	4.2	8
174	Intense agricultural irrigation induced contrasting precipitation changes in Saudi Arabia. Environmental Research Letters, 2021, 16, 064049.	5.2	6
175	Using the jet stream for sustainable airship and balloon transportation of cargo and hydrogen. Energy Conversion and Management: X, 2019, 3, 100016.	1.6	5
176	Multi-model evaluation of catchment- and global-scale hydrological model simulations of drought characteristics across eight large river catchments. Advances in Water Resources, 2022, 165, 104212.	3.8	5
177	Modelling Freshwater Resources at the Global Scale: Challenges and Prospects. Space Sciences Series of ISSI, 2016, , 5-31.	0.0	4
178	Co-development of East African regional water scenarios for 2050. One Earth, 2021, 4, 434-447.	6.8	4
179	Validity of estimating flood and drought characteristics under equilibrium climates from transient simulations. Environmental Research Letters, 2021, 16, 104028.	5 . 2	4
180	East African Community Water Vision. Regional Scenarios for Human - Natural Water System Transformations. SSRN Electronic Journal, 0, , .	0.4	2

#	Article	IF	CITATIONS
181	Exploring the potential impacts of historic volcanic eruptions on the contemporary global food system. Past Global Change Magazine, 2015, 23, 66-67.	0.1	2
182	Sedimentary Basin Water and Energy Storage: A Low Environmental Impact Option for the Bananal Basin. Energies, 2022, 15, 4498.	3.1	2
183	Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects. Space Sciences Series of ISSI, 2016, , 229-261.	0.0	1
184	From scripts towards provenance inference. , 2012, , .		0
185	Water-Energy-Food Nexus: Linking Global to Local. Trends in the Sciences, 2022, 27, 1_28-1_34.	0.0	0