
Eduardo Flores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9464515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides. 2D Materials, 2017, 4, 022003.	2.0	146
2	Thermoelectric power of bulk black-phosphorus. Applied Physics Letters, 2015, 106, .	1.5	135
3	Temperature-Dependent Raman Spectroscopy of Titanium Trisulfide (TiS ₃) Nanoribbons and Nanosheets. ACS Applied Materials & Interfaces, 2015, 7, 24185-24190.	4.0	89
4	Polarizationâ€5ensitive and Broadband Photodetection Based on a Mixedâ€Dimensionality TiS ₃ /Si p–n Junction. Advanced Optical Materials, 2018, 6, 1800351.	3.6	64
5	Electronic Bandgap and Exciton Binding Energy of Layered Semiconductor TiS ₃ . Advanced Electronic Materials, 2015, 1, 1500126.	2.6	59
6	High Current Density Electrical Breakdown of TiS ₃ Nanoribbonâ€Based Fieldâ€Effect Transistors. Advanced Functional Materials, 2017, 27, 1605647.	7.8	52
7	Large birefringence and linear dichroism in TiS ₃ nanosheets. Nanoscale, 2018, 10, 12424-12429.	2.8	40
8	Titanium trisulphide (TiS ₃) nanoribbons for easy hydrogen photogeneration under visible light. Journal of Materials Chemistry A, 2015, 3, 7959-7965.	5.2	39
9	Hydrogen Photoassisted Generation by Visible Light and an Earth Abundant Photocatalyst: Pyrite (FeS ₂). Journal of Physical Chemistry C, 2016, 120, 9547-9552.	1.5	37
10	Strain-induced band gap engineering in layered TiS3. Nano Research, 2018, 11, 225-232.	5.8	36
11	Electrochemical deposition and thermoelectric characterisation of a semiconducting 2-D metal–organic framework thin film. Journal of Materials Chemistry A, 2020, 8, 13197-13206.	5.2	36
12	Synthesis and characterization of a family of layered trichalcogenides for assisted hydrogen photogeneration. Physica Status Solidi - Rapid Research Letters, 2016, 10, 802-806.	1.2	34
13	Marcasite revisited: Optical absorption gap at room temperature. Solid State Communications, 2016, 230, 20-24.	0.9	29
14	High mobility and high thermoelectric power factor in epitaxial ScN thin films deposited with plasma-assisted molecular beam epitaxy. Applied Physics Letters, 2020, 116, .	1.5	26
15	Dielectrophoretic assembly of liquid-phase-exfoliated TiS ₃ nanoribbons for photodetecting applications. Chemical Communications, 2017, 53, 6164-6167.	2.2	22
16	Chemical vapor deposition growth of boron–carbon–nitrogen layers from methylamine borane thermolysis products. Nanotechnology, 2018, 29, 025603.	1.3	21
17	Influence of temperature on thermoelectric properties of FexCo1â^'xS2 thin films: A semiconductor to semimetal conversion. Thin Solid Films, 2016, 600, 19-24.	0.8	20
18	Beyond Mono-, Di-, and Trisulfides: Synthesizing Vanadium Tetrasulfide (VS ₄) Films for Energy Conversion. ACS Applied Energy Materials, 2018, 1, 2333-2340.	2.5	19

EDUARDO FLORES

#	Article	IF	CITATIONS
19	Tunable Carrier Type of a Semiconducting 2D Metal–Organic Framework Cu ₃ (HHTP) ₂ . ACS Applied Materials & Interfaces, 2022, 14, 12404-12411.	4.0	16
20	Raman Fingerprint of Pressure-Induced Phase Transitions in TiS ₃ Nanoribbons: Implications for Thermal Measurements under Extreme Stress Conditions. ACS Applied Nano Materials, 2020, 3, 8794-8802.	2.4	15
21	Multi-terminal electronic transport in boron nitride encapsulated TiS ₃ nanosheets. 2D Materials, 2020, 7, 015009.	2.0	14
22	Tunable Photodetectors via In Situ Thermal Conversion of TiS3 to TiO2. Nanomaterials, 2020, 10, 711.	1.9	14
23	Synthesis of Ternary Borocarbonitrides by High Temperature Pyrolysis of Ethane 1,2-Diamineborane. Materials, 2015, 8, 5974-5985.	1.3	13
24	Unravelling nanoporous anodic iron oxide formation. Electrochimica Acta, 2020, 330, 135241.	2.6	13
25	Ternary transition titanium-niobium trisulfide as photoanode for assisted water splitting. Catalysis Today, 2019, 321-322, 107-112.	2.2	11
26	Integrating van der Waals materials on paper substrates for electrical and optical applications. Applied Materials Today, 2021, 23, 101012.	2.3	9
27	An XPS investigation on the influence of the substrate and growth conditions on pyrite thin films surface composition. Applied Surface Science, 2019, 492, 651-660.	3.1	8
28	Improving the Efficiency of Thin Film Thermoelectric Generators under Constant Heat Flux by Using Substrates of Low Thermal Conductivity. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800277.	1.2	7
29	Reactivity of a FeS Surface under Room Temperature Exposure to Nitrogen and H ₂ S. Journal of Physical Chemistry B, 2018, 122, 705-712.	1.2	5
30	Pyrite thin films on amorphous substrates: Interaction with the substrate and doping effects. Thin Solid Films, 2019, 672, 138-145.	0.8	5
31	On the van der Pauw's method applied to the measurement of low thermal conductivity materials. Review of Scientific Instruments, 2016, 87, 084902.	0.6	4
32	Imaging the Kirkendall effect in pyrite (FeS2) thin films: Cross-sectional microstructure and chemical features. Acta Materialia, 2021, 205, 116582.	3.8	4
33	Borocarbonitride Layers on Titanium Dioxide Nanoribbons for Efficient Photoelectrocatalytic Water Splitting. Materials, 2021, 14, 5490.	1.3	4
34	Hydrogen Storage by Titanium Based Sulfides: Nanoribbons (TiS3) and Nanoplates (TiS2). J of Electrical Engineering, 2015, 3, .	0.1	3