
William T Festuccia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9464511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic Rapamycin Treatment Causes Glucose Intolerance and Hyperlipidemia by Upregulating Hepatic Gluconeogenesis and Impairing Lipid Deposition in Adipose Tissue. Diabetes, 2010, 59, 1338-1348.	0.3	383
2	Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids in Health and Disease, 2012, 11, 30.	1.2	213
3	Sympathetic innervation of white adipose tissue and its regulation of fat cell number. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R1167-R1175.	0.9	179
4	Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E272-E282.	1.8	126
5	PPARÎ ³ agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control. Diabetologia, 2006, 49, 2427-2436.	2.9	124
6	Mechanisms of the Depot Specificity of Peroxisome Proliferator-Activated Receptor Action on Adipose Tissue Metabolism. Diabetes, 2006, 55, 2771-2778.	0.3	113
7	A comparative perspective on lipid storage in animals. Journal of Cell Science, 2013, 126, 1541-1552.	1.2	112
8	Major involvement of mTOR in the PPARÎ ³ -induced stimulation of adipose tissue lipid uptake and fat accretion. Journal of Lipid Research, 2012, 53, 1117-1125.	2.0	110
9	Peroxisome Proliferator-Activated Receptor-Î ³ -Mediated Positive Energy Balance in the Rat Is Associated with Reduced Sympathetic Drive to Adipose Tissues and Thyroid Status. Endocrinology, 2008, 149, 2121-2130.	1.4	106
10	DEPTOR Cell-Autonomously Promotes Adipogenesis, and Its Expression Is Associated with Obesity. Cell Metabolism, 2012, 16, 202-212.	7.2	99
11	Myeloid-Specific Rictor Deletion Induces M1 Macrophage Polarization and Potentiates In Vivo Pro-Inflammatory Response to Lipopolysaccharide. PLoS ONE, 2014, 9, e95432.	1.1	94
12	Human Cachexia Induces Changes in Mitochondria, Autophagy and Apoptosis in the Skeletal Muscle. Cancers, 2019, 11, 1264.	1.7	77
13	Depot-specific effects of the PPARÎ ³ agonist rosiglitazone on adipose tissue glucose uptake and metabolism. Journal of Lipid Research, 2009, 50, 1185-1194.	2.0	73
14	Hypothalamic Actions of Tumor Necrosis Factor α Provide the Thermogenic Core for the Wastage Syndrome in Cachexia. Endocrinology, 2010, 151, 683-694.	1.4	73
15	Depot-Specific Modulation of Rat Intraabdominal Adipose Tissue Lipid Metabolism by Pharmacological Inhibition of 11β-Hydroxysteroid Dehydrogenase Type 1. Endocrinology, 2007, 148, 2391-2397.	1.4	71
16	Control of Brown Adipose Tissue Glucose and Lipid Metabolism by PPARÎ ³ . Frontiers in Endocrinology, 2011, 2, 84.	1.5	64
17	mTORC1 is Required for Brown Adipose Tissue Recruitment and Metabolic Adaptation to Cold. Scientific Reports, 2016, 6, 37223.	1.6	64
18	Palmitoleic acid (n-7) increases white adipocyte lipolysis and lipase content in a PPARα-dependent manner. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1093-E1102.	1.8	63

#	Article	IF	CITATIONS
19	Palmitoleic acid (n-7) increases white adipocytes GLUT4 content and glucose uptake in association with AMPK activation. Lipids in Health and Disease, 2014, 13, 199.	1.2	55
20	The PPARÎ ³ agonist rosiglitazone enhances rat brown adipose tissue lipogenesis from glucose without altering glucose uptake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1327-R1335.	0.9	54
21	11β-HSD1 inhibition improves triglyceridemia through reduced liver VLDL secretion and partitions lipids toward oxidative tissues. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1045-E1052.	1.8	52
22	Basal adrenergic tone is required for maximal stimulation of rat brown adipose tissue UCP1 expression by chronic PPAR-γ activation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R159-R167.	0.9	52
23	Demethylation and epigenetic modification with 5-azacytidine reduces IDH1 mutant glioma growth in combination with temozolomide. Neuro-Oncology, 2019, 21, 189-200.	0.6	49
24	Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice. Aging, 2016, 8, 1201-1222.	1.4	47
25	Omegaâ€3 fatty acids protect from dietâ€induced obesity, glucose intolerance, and adipose tissue inflammation through PPARγâ€dependent and PPARγâ€independent actions. Molecular Nutrition and Food Research, 2015, 59, 957-967.	1.5	46
26	mTORC1 inhibition with rapamycin exacerbates adipose tissue inflammation in obese mice and dissociates macrophage phenotype from function. Immunobiology, 2017, 222, 261-271.	0.8	41
27	PPARÎ ³ activation attenuates glucose intolerance induced by mTOR inhibition with rapamycin in rats. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1046-E1054.	1.8	40
28	The hepatokine Tsukushi is released in response to NAFLD and impacts cholesterol homeostasis. JCI Insight, 2019, 4, .	2.3	39
29	Expression of glycerokinase in brown adipose tissue is stimulated by the sympathetic nervous system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1536-R1541.	0.9	37
30	Tissue-specific postprandial clearance is the major determinant of PPARÎ ³ -induced triglyceride lowering in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R57-R66.	0.9	37
31	Adipocyte mTORC1 deficiency promotes adipose tissue inflammation and NLRP3 inflammasome activation via oxidative stress and de novo ceramide synthesis. Journal of Lipid Research, 2017, 58, 1797-1807.	2.0	37
32	Glyceroneogenesis Is Reduced and Glucose Uptake Is Increased in Adipose Tissue from Cafeteria Diet–Fed Rats Independently of Tissue Sympathetic Innervation. Journal of Nutrition, 2006, 136, 2475-2480.	1.3	36
33	Constitutive adipocyte mTORC1 activation enhances mitochondrial activity and reduces visceral adiposity in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 430-438.	1.2	36
34	Dectin-1 Activation Exacerbates Obesity and Insulin Resistance in the Absence of MyD88. Cell Reports, 2017, 19, 2272-2288.	2.9	36
35	Phenolic compounds from cambuci (Campomanesia phaea O. Berg) fruit attenuate glucose intolerance and adipose tissue inflammation induced by a high-fat, high-sucrose diet. Food Research International, 2015, 69, 170-178.	2.9	35
36	Brown adipose tissue glyceroneogenesis is activated in rats exposed to cold. Pflugers Archiv European Journal of Physiology, 2005, 449, 463-469.	1.3	34

#	Article	IF	CITATIONS
37	Rosiglitazone-induced heart remodelling is associated with enhanced turnover of myofibrillar protein and mTOR activation. Journal of Molecular and Cellular Cardiology, 2009, 47, 85-95.	0.9	32
38	High-fat diet-induced hypertension and autonomic imbalance are associated with an upregulation of CART in the dorsomedial hypothalamus of mice. Physiological Reports, 2016, 4, e12811.	0.7	31
39	Glucose uptake, glucose transporter GLUT4, and glycolytic enzymes in brown adipose tissue from rats adapted to a high-protein diet. Metabolism: Clinical and Experimental, 2002, 51, 1501-1505.	1.5	30
40	Involvement of adipose tissues in the early hypolipidemic action of PPARÎ ³ agonism in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1408-R1417.	0.9	29
41	Peroxisome proliferatorâ€activated receptor <i>γ</i> activation favours selective subcutaneous lipid deposition by coordinately regulating lipoprotein lipase modulators, fatty acid transporters and lipogenic enzymes. Acta Physiologica, 2016, 217, 227-239.	1.8	29
42	Fish Oil Protects Wild Type and Uncoupling Protein 1â€Đeficient Mice from Obesity and Glucose Intolerance by Increasing Energy Expenditure. Molecular Nutrition and Food Research, 2019, 63, 1800813.	1.5	29
43	Glycerokinase activity in brown adipose tissue: a sympathetic regulation?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R1185-R1190.	0.9	28
44	PPARÎ ³ is a major regulator of branched-chain amino acid blood levels and catabolism in white and brown adipose tissues. Metabolism: Clinical and Experimental, 2018, 89, 27-38.	1.5	27
45	Regulation of Metabolic Disease-Associated Inflammation by Nutrient Sensors. Mediators of Inflammation, 2018, 2018, 1-18.	1.4	26
46	Eicosapentaenoic Acid Reduces Adiposity, Glucose Intolerance and Increases Oxygen Consumption Independently of Uncoupling Protein 1. Molecular Nutrition and Food Research, 2019, 63, e1800821.	1.5	26
47	Regulation of Adipocyte and Macrophage Functions by mTORC1 and 2 in Metabolic Diseases. Molecular Nutrition and Food Research, 2021, 65, e1900768.	1.5	25
48	Consumo máximo de oxigênio e limiar anaeróbio de jogadores de futebol: comparação entre as diferentes posições. Revista Brasileira De Medicina Do Esporte, 2002, 8, 32-36.	0.1	24
49	Control of glyceroneogenic activity in rat brown adipose tissue. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R177-R182.	0.9	24
50	Palmitoleic acid reduces high fat diet-induced liver inflammation by promoting PPAR-Î ³ -independent M2a polarization of myeloid cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158776.	1.2	23
51	A leukotriene-dependent spleen-liver axis drives TNF production in systemic inflammation. Science Signaling, 2021, 14, .	1.6	22
52	Increased glyceroneogenesis in adipose tissue from rats adapted to a high-protein, carbohydrate-free diet: role of dietary fatty acids. Metabolism: Clinical and Experimental, 2006, 55, 84-89.	1.5	21
53	Cagaita fruit (Eugenia dysenterica DC.) and obesity: Role of polyphenols on already established obesity. Food Research International, 2018, 103, 40-47.	2.9	21
54	Hypothalamic stearoyl-CoA desaturase-2 (SCD2) controls whole-body energy expenditure. International Journal of Obesity, 2016, 40, 471-478.	1.6	19

#	Article	IF	CITATIONS
55	Critical review of beige adipocyte thermogenic activation and contribution to whole-body energy expenditure. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	19
56	A novel peptide that improves metabolic parameters without adverse central nervous system effects. Scientific Reports, 2017, 7, 14781.	1.6	19
57	The Hepatokine TSK does not affect brown fat thermogenic capacity, body weight gain, and glucose homeostasis. Molecular Metabolism, 2019, 30, 184-191.	3.0	19
58	Dynamic changes in DICER levels in adipose tissue control metabolic adaptations to exercise. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23932-23941.	3.3	19
59	Interscapular brown adipose tissue denervation does not promote the oxidative activity of inguinal white adipose tissue in male mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E815-E824.	1.8	17
60	Polyphenols of cambuci (Campomanesia phaea (O. Berg.)) fruit ameliorate insulin resistance and hepatic steatosis in obese mice. Food Chemistry, 2021, 340, 128169.	4.2	17
61	Additive action of 11î²-HSD1 inhibition and PPAR-γ agonism on hepatic steatosis and triglyceridemia in diet-induced obese rats. International Journal of Obesity, 2009, 33, 601-604.	1.6	16
62	Exercise rescues the immune response fineâ€ŧuned impaired by peroxisome proliferatorâ€activated receptors γ deletion in macrophages. Journal of Cellular Physiology, 2019, 234, 5241-5251.	2.0	16
63	Preliminary report: pharmacologic 11β-hydroxysteroid dehydrogenase type 1 inhibition increases hepatic fat oxidation in vivo and expression of related genes in rats fed an obesogenic diet. Metabolism: Clinical and Experimental, 2010, 59, 114-117.	1.5	15
64	PPARÎ ³ activation attenuates cold-induced upregulation of thyroid status and brown adipose tissue PGC-1α and D2. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R1277-R1285.	0.9	15
65	Dietary sulfur amino acid restriction upregulates DICER to confer beneficial effects. Molecular Metabolism, 2019, 29, 124-135.	3.0	15
66	Integrated Proteomics Reveals Apoptosis-related Mechanisms Associated with Placental Malaria*. Molecular and Cellular Proteomics, 2019, 18, 182-199.	2.5	15
67	miRNA-22 deletion limits white adipose expansion and activates brown fat to attenuate high-fat diet-induced fat mass accumulation. Metabolism: Clinical and Experimental, 2021, 117, 154723.	1.5	15
68	Liver lipidome signature and metabolic pathways in nonalcoholic fatty liver disease induced by a high-sugar diet. Journal of Nutritional Biochemistry, 2021, 87, 108519.	1.9	12
69	Adipocyte-specific mTORC2 deficiency impairs BAT and iWAT thermogenic capacity without affecting glucose uptake and energy expenditure in cold-acclimated mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E592-E605.	1.8	12
70	Response to Intra- and Extracellular Lipolytic Agents and Hormone-Sensitive Lipase Translocation Are Impaired in Adipocytes from Rats Adapted to a High-Protein, Carbohydrate-Free Diet. Journal of Nutrition, 2004, 134, 2919-2923.	1.3	11
71	Immunometabolism: Molecular Mechanisms, Diseases, and Therapies 2016. Mediators of Inflammation, 2017, 2017, 1-2.	1.4	10
72	Regulation of adiposity by mTORC1. Einstein (Sao Paulo, Brazil), 2017, 15, 507-511.	0.3	10

#	Article	IF	CITATIONS
73	PPARÎ ³ -induced upregulation of subcutaneous fat adiponectin secretion, glyceroneogenesis and BCAA oxidation requires mTORC1 activity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158967.	1.2	10
74	Leukotriene-B4 modulates macrophage metabolism and fat loss in type 1 diabetic mice. Journal of Leukocyte Biology, 2019, 106, 665-675.	1.5	9
75	Lipoatrophyâ€Associated Insulin Resistance and Hepatic Steatosis are Attenuated by Intake of Diet Rich in Omega 3 Fatty Acids. Molecular Nutrition and Food Research, 2020, 64, 1900833.	1.5	9
76	Depot specificities of PPARg ligand actions on lipid and glucose metabolism and their implication in PPARg-mediated body fat redistribution. Clinical Lipidology, 2009, 4, 633-642.	0.4	8
77	Interleukin-6 and the Gut Microbiota Influence Melanoma Progression in Obese Mice. Nutrition and Cancer, 2021, 73, 642-651.	0.9	8
78	Long-term supplementation with phenolic compounds from jaboticaba (Plinia jaboticaba (Vell.) Berg) reduces adiposophaty and improves glucose, lipid, and energy metabolism. Food Research International, 2021, 143, 110302.	2.9	8
79	Regulation of brown adipose tissue recruitment, metabolism and thermogenic function by peroxisome proliferator-activated receptor l³ . Temperature, 2015, 2, 476-482.	1.7	7
80	Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP–FRB Interaction and Autophagy. Cells, 2022, 11, 385.	1.8	7
81	Autophagy deficiency abolishes liver mitochondrial DNA segregation. Autophagy, 2022, 18, 2397-2408.	4.3	6
82	Constitutive Activation of the Nutrient Sensor mTORC1 in Myeloid Cells Induced by Tsc1 Deletion Protects Mice from Dietâ€Induced Obesity. Molecular Nutrition and Food Research, 2018, 62, e1800283.	1.5	5
83	Immunometabolism: Molecular Mechanisms, Diseases, and Therapies 2018. Mediators of Inflammation, 2019, 2019, 1-2.	1.4	5
84	Mild-cold water swimming does not exacerbate white adipose tissue browning and brown adipose tissue activation in mice. Journal of Physiology and Biochemistry, 2020, 76, 663-672.	1.3	5
85	Macrophage immunophenotype but not anti-inflammatory profile is modulated by peroxisome proliferator-activated receptor gamma (PPARγ) in exercised obese mice. Exercise Immunology Review, 2020, 26, 10-22.	0.4	5
86	Adaptation to a high protein, carbohydrate-free diet induces a marked reduction of fatty acid synthesis and lipogenic enzymes in rat adipose tissue that is rapidly reverted by a balanced diet. Canadian Journal of Physiology and Pharmacology, 2005, 83, 477-482.	0.7	4
87	Depletion of Ric-8B leads to reduced mTORC2 activity. PLoS Genetics, 2020, 16, e1008255.	1.5	3
88	Sympathetic Regulation of Slc2a4 Gene Expression: Participation of a Putative cAMP Responsive Element (CRE) Site in the Slc2a4 Promoter. Cellular Physiology and Biochemistry, 2019, 52, 580-594.	1.1	3
89	New Intracellular Peptide Derived from Hemoglobin Alpha Chain Induces Glucose Uptake and Reduces Blood Glycemia. Pharmaceutics, 2021, 13, 2175.	2.0	3
90	Loss of mTORC2 Activity in Neutrophils Impairs Fusion of Granules and Affects Cellular Metabolism Favoring Increased Bacterial Burden in Sepsis. Journal of Immunology, 2021, 207, 626-639.	0.4	2

#	Article	IF	CITATIONS
91	Sex-Dependent Effects of Eicosapentaenoic Acid on Hepatic Steatosis in UCP1 Knockout Mice. Biomedicines, 2021, 9, 1549.	1.4	1
92	The Role of Adiponectin in an Experimental Model of Allogeneic Skin Transplantation Transplantation, 2014, 98, 330.	0.5	0
93	Immunometabolism: Molecular Mechanisms, Diseases, and Therapies. Mediators of Inflammation, 2014, 2014, 1-2.	1.4	0
94	Palmitoleate attenuates diet induced insulin resistance and hepatic inflammation independently of PPAR-α. Cancer & Metabolism, 2014, 2, .	2.4	0
95	Turning up the heat against metabolic syndrome and non-alcoholic fatty liver disease. Clinical Science, 2017, 131, 327-328.	1.8	0
96	Thermoneutrality Reduces the Beneficial Metabolic Effects of Eicosapentaenoic Acid on White Adipose Tissue in Diet-Induced Obese Mice. Current Developments in Nutrition, 2020, 4, nzaa058_012.	0.1	0
97	Sex-Dependent Effects of Eicosapentaenoic Acid and UCP1 Deficiency on Hepatic Steatosis in Diet-Induced Obese Mice. Current Developments in Nutrition, 2021, 5, 1193.	0.1	0
98	Editorial: Interplay Between Autophagy and Metabolic Syndrome: Causes, Consequences and Therapeutic Challenges. Frontiers in Cell and Developmental Biology, 2021, 9, 765778.	1.8	0
99	Palmitoleic acid enhances glucose uptake and glycerolâ€3â€phosphate generation in adipocytes (LB426). FASEB Journal, 2014, 28, LB426.	0.2	0
100	Abstract P1-08-08: Reduction of HER2-associated lipogenic phenotype by docosahexaenoic acid (DHA) induces apoptosis in breast tumor cells harboring HER2 overexpression. , 2015, , .		0
101	Eicosapentaenoic Acid Reduces Hepatic Steatosis Independently of UCP1. FASEB Journal, 2020, 34, 1-1.	0.2	0
102	Lipoatrophyâ€associated insulin resistance and hepatic steatosis are attenuated by intake of diet rich in omega 3 fatty acids FASEB Journal, 2020, 34, 1-1.	0.2	0
103	Depletion of Ric-8B leads to reduced mTORC2 activity. , 2020, 16, e1008255.		0
104	Depletion of Ric-8B leads to reduced mTORC2 activity. , 2020, 16, e1008255.		0
105	Depletion of Ric-8B leads to reduced mTORC2 activity. , 2020, 16, e1008255.		0
106	Depletion of Ric-8B leads to reduced mTORC2 activity. , 2020, 16, e1008255.		0