Alonso, A

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9464295/publications.pdf

Version: 2024-02-01

218677 233421 2,361 45 78 26 citations h-index g-index papers 79 79 79 2984 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antileishmanial activity of 3,4,5-trisubstituted isoxazoles by interaction with Leishmania amazonensis plasma membrane. Journal of Molecular Structure, 2022, 1249, 131604.	3.6	8
2	Combination of lipid nanoparticles and iontophoresis for enhanced lopinavir skin permeation: Impact of electric current on lipid dynamics. European Journal of Pharmaceutical Sciences, 2022, 168, 106048.	4.0	11
3	Plasma membrane rigidity effects of 4-hydroxy-2-nonenal in Leishmania, erythrocyte and macrophage. Toxicology in Vitro, 2022, 79, 105294.	2.4	O
4	Mycobacterium abscessus cell wall and plasma membrane characterization by EPR spectroscopy and effects of amphotericin B, miltefosine and nerolidol. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183872.	2.6	1
5	Ivermectin and curcumin cause plasma membrane rigidity in Leishmania amazonensis due to oxidative stress. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183977.	2.6	3
6	Membrane dynamics in Leishmania amazonensis and antileishmanial activities of \hat{l}^2 -carboline derivatives. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183473.	2.6	16
7	Nanostructured lipid carriers for hair follicle-targeted delivery of clindamycin and rifampicin to hidradenitis suppurativa treatment. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111448.	5.0	16
8	Enhanced nail delivery of voriconazole-loaded nanomicelles by thioglycolic acid pretreatment: A study of protein dynamics and disulfide bond rupture. International Journal of Pharmaceutics, 2021, 602, 120597.	5.2	7
9	Comparative EPR spectroscopy analysis of amphotericin B and miltefosine interactions with Leishmania, erythrocyte and macrophage membranes. European Journal of Pharmaceutical Sciences, 2021, 163, 105859.	4.0	5
10	Iontophoresis enhances voriconazole antifungal potency and corneal penetration. International Journal of Pharmaceutics, 2020, 576, 118991.	5. 2	21
11	Biomimetic Artificial Membrane Permeability Assay over Franz Cell Apparatus Using BCS Model Drugs. Pharmaceutics, 2020, 12, 988.	4.5	12
12	Analysis of the Interactions of Amphotericin B with the Leishmania Plasma Membrane Using EPR Spectroscopy. Journal of Physical Chemistry B, 2020, 124, 10157-10165.	2.6	10
13	Antileishmanial activity of the chalcone derivative LQFM064 associated with reduced fluidity in the parasite membrane as assessed by EPR spectroscopy. European Journal of Pharmaceutical Sciences, 2020, 151, 105407.	4.0	17
14	Photoinactivation of Salmonella enterica (serovar Typhimurium) by tetra-cationic porphyrins containing peripheral [Ru(bpy)2Cl]+ units. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 391, 112375.	3.9	28
15	Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study. Molecular Pharmaceutics, 2020, 17, 837-851.	4.6	18
16	Antileishmanial and cytotoxic activities of ionic surfactants compared to those of miltefosine. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110421.	5.0	16
17	Effects of bovine serum albumin (BSA) on the excited-state properties of meso-tetrakis(sulfonatophenyl) porphyrin (TPPS4). European Biophysics Journal, 2019, 48, 721-729.	2.2	12
18	Interactions of miltefosine with erythrocyte membrane proteins compared to those of ionic surfactants. Colloids and Surfaces B: Biointerfaces, 2019, 180, 23-30.	5.0	14

#	Article	IF	Citations
19	In vitro antileishmanial and cytotoxic activities of nerolidol are associated with changes in plasma membrane dynamics. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1049-1056.	2.6	21
20	Enhanced asiaticoside skin permeation by Centella asiatica-loaded lipid nanoparticles: Effects of extract type and study of stratum corneum lipid dynamics. Journal of Drug Delivery Science and Technology, 2019, 50, 305-312.	3.0	18
21	An EPR spin probe study of the interactions between PC liposomes and stratum corneum membranes. International Journal of Pharmaceutics, 2018, 545, 93-100.	5.2	11
22	Development of lamellar gel phase emulsion containing baru oil (Dipteryx alata Vog.) as a prospective delivery system for cutaneous application. Asian Journal of Pharmaceutical Sciences, 2018, 13, 183-190.	9.1	12
23	Photodynamic inactivation of Bovine herpesvirus type 1 (BoHV-1) by porphyrins. Journal of General Virology, 2018, 99, 1301-1306.	2.9	20
24	Antioxidant activity and mechanism of commercial Rama Forte persimmon fruits (Diospyros kaki). PeerJ, 2018, 6, e5223.	2.0	6
25	Improved tacrolimus skin permeation by co-encapsulation with clobetasol in lipid nanoparticles: Study of drug effects in lipid matrix by electron paramagnetic resonance. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 142-149.	4.3	24
26	Effects of nerolidol and limonene on stratum corneum membranes: A probe EPR and fluorescence spectroscopy study. International Journal of Pharmaceutics, 2017, 532, 547-554.	5.2	8
27	Ellagic acid inhibits iron-mediated free radical formation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 910-917.	3.9	30
28	The cytotoxic activity of miltefosine against Leishmania and macrophages is associated with dynamic changes in plasma membrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1-9.	2.6	30
29	Photodynamic evaluation of tetracarboxy-phthalocyanines in model systems. Journal of Photochemistry and Photobiology B: Biology, 2016, 161, 100-107.	3.8	27
30	Transmittance and Autofluorescence of Neonatal Rat Stratum Corneum: Nerolidol Increases the Dynamics and Partitioning of Protoporphyrin IX into Intercellular Membranes. Journal of Fluorescence, 2016, 26, 709-717.	2.5	4
31	Hemolytic potential of miltefosine is dependent on cell concentration: Implications for in vitro cell cytotoxicity assays and pharmacokinetic data. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1160-1164.	2.6	20
32	On the formation, physicochemical properties and antibacterial activity of colloidal systems containing tea tree (Melaleuca alternifolia) oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 271-279.	4.7	22
33	Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation—A Chemical Approach. PLoS ONE, 2015, 10, e0129963.	2.5	108
34	Liposomal Entrapment of 4-Nerolidylcatechol: Impact on Phospholipid Dynamics, Drug Stability and Bioactivity. Journal of Nanoscience and Nanotechnology, 2015, 15, 838-847.	0.9	13
35	Effects of terpenes on fluidity and lipid extraction in phospholipid membranes. Biophysical Chemistry, 2015, 198, 45-54.	2.8	41
36	Terpenes Increase the Lipid Dynamics in the Leishmania Plasma Membrane at Concentrations Similar to Their IC50 Values. PLoS ONE, 2014, 9, e104429.	2.5	56

#	Article	IF	CITATIONS
37	Paclitaxel-loaded lipid nanoparticles for topical application: the influence of oil content on lipid dynamic behavior, stability, and drug skin penetration. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	17
38	Cell death in amastigote forms of Leishmania amazonensis induced by parthenolide. BMC Microbiology, 2014, 14, 152.	3.3	24
39	Miltefosine Increases Lipid and Protein Dynamics in Leishmania amazonensis Membranes at Concentrations Similar to Those Needed for Cytotoxicity Activity. Antimicrobial Agents and Chemotherapy, 2014, 58, 3021-3028.	3.2	37
40	Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 40-47.	4.3	69
41	Interaction of Miltefosine with the Lipid and Protein Components of the Erythrocyte Membrane. Journal of Pharmaceutical Sciences, 2013, 102, 1661-1669.	3.3	23
42	4-Nerolidylcatechol and its synthetic analogues: Antioxidant activity and toxicity evaluation. European Journal of Medicinal Chemistry, 2013, 62, 371-378.	5.5	14
43	Toxicity of terpenes on fibroblast cells compared to their hemolytic potential and increase in erythrocyte membrane fluidity. Toxicology in Vitro, 2013, 27, 323-329.	2.4	72
44	Electron paramagnetic resonance (EPR) spectral components of spin-labeled lipids in saturated phospholipid bilayers: effect of cholesterol. Quimica Nova, 2013, 36, 815-821.	0.3	6
45	Antioxidant effect of 4-nerolidylcatechol and $\hat{l}\pm$ -tocopherol in erythrocyte ghost membranes and phospholipid bilayers. Brazilian Journal of Medical and Biological Research, 2013, 46, 780-788.	1.5	5
46	Trypanocidal Action of (\hat{a}^2) -Elatol Involves an Oxidative Stress Triggered by Mitochondria Dysfunction. Marine Drugs, 2012, 10, 1631-1646.	4.6	51
47	Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide. Brazilian Journal of Medical and Biological Research, 2012, 45, 473-481.	1.5	37
48	Interaction of miltefosine with intercellular membranes of stratum corneum and biomimetic lipid vesicles. International Journal of Pharmaceutics, 2012, 434, 391-398.	5.2	32
49	On the interaction of bovine serum albumin with ionic surfactants: Temperature induced EPR changes of a maleimide nitroxide reflect local protein dynamics and probe solvent accessibility. Colloids and Surfaces B: Biointerfaces, 2011, 88, 463-470.	5.0	25
50	Molecular Dynamics and Partitioning of Diâ€∢i>tertàêbutyl Nitroxide in Stratum Corneum Membranes: Effect of Terpenes. Lipids, 2010, 45, 419-427.	1.7	14
51	Pharmaceutical properties of 'sucupira' (Pterodon spp.). Brazilian Journal of Pharmaceutical Sciences, 2010, 46, 607-616.	1.2	25
52	Interaction of bovine serum albumin (BSA) with ionic surfactants evaluated by electron paramagnetic resonance (EPR) spectroscopy. Colloids and Surfaces B: Biointerfaces, 2009, 70, 147-156.	5.0	22
53	Terpenes increase the partitioning and molecular dynamics of an amphipathic spin label in stratum corneum membranes. International Journal of Pharmaceutics, 2008, 350, 103-112.	5.2	47
54	Effects of ethanol/l-menthol on the dynamics and partitioning of spin-labeled lipids in the stratum corneum. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 406-412.	4.3	36

#	Article	IF	Citations
55	Effects of 1,8-cineole on the dynamics of lipids and proteins of stratum corneum. International Journal of Pharmaceutics, 2007, 345, 81-87.	5.2	51
56	Tannic acid inhibits inÂvitro iron-dependent free radical formation. Biochimie, 2006, 88, 1287-1296.	2.6	66
57	Dynamics and partitioning of spin-labeled stearates into the lipid domain of stratum corneum. Journal of Controlled Release, 2005, 106, 374-385.	9.9	22
58	Dynamics of proteins and lipids in the stratum corneum: Effects of percutaneous permeation enhancers. Biophysical Chemistry, 2005, 116, 23-31.	2.8	16
59	The antioxidant effect of tannic acid on the in vitro copper-mediated formation of free radicals. Archives of Biochemistry and Biophysics, 2005, 437, 1-9.	3.0	139
60	Small-angle X-ray scattering and electron paramagnetic resonance study of the interaction of bovine serum albumin with ionic surfactants. Journal of Colloid and Interface Science, 2004, 277, 471-482.	9.4	86
61	Hydration effects on the protein dynamics in stratum corneum as evaluated by EPR spectroscopy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1646, 32-41.	2.3	22
62	Pyridoxal isonicotinoyl hydrazone inhibits iron-induced ascorbate oxidation and ascorbyl radical formation. Biochimica Et Biophysica Acta - General Subjects, 2003, 1620, 15-24.	2.4	20
63	Electron paramagnetic resonance of nitroxide-doped magnetic fluids. Journal of Magnetism and Magnetic Materials, 2002, 252, 53-55.	2.3	4
64	Stratum Corneum Protein Dynamics as Evaluated by a Spin-Label Maleimide Derivative: Effect of Urea. Biophysical Journal, 2001, 81, 3566-3576.	0.5	31
65	Interaction of Cholesterol with Sphingomyelin in Mixed Membranes Containing Phosphatidylcholine, Studied by Spin-Label ESR and IR Spectroscopies. A Possible Stabilization of Gel-Phase Sphingolipid Domains by Cholesterol. Biochemistry, 2001, 40, 2614-2622.	2.5	146
66	Lipid chain dynamics in stratum corneum studied by spin label electron paramagnetic resonance. Chemistry and Physics of Lipids, 2000, 104, 101-111.	3.2	22
67	Stratum corneum protein mobility as evaluated by a spin label maleimide derivative. BBA - Proteins and Proteomics, 2000, 1478, 89-101.	2.1	10
68	Chilling-induced changes in membrane fluidity and antioxidant enzyme activities in Coffea arabica L. roots. Biologia Plantarum, 1998, 41, 403-413.	1.9	67
69	Effects of polyoxyethylene chain length on erythrocyte hemolysis induced by poly[oxyethylene (n) nonylphenol] non-ionic surfactants. Chemico-Biological Interactions, 1998, 113, 91-103.	4.0	36
70	Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L.) seedlings. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1323, 75-84.	2.6	94
71	Inhibitory Effect of Dipyridamole and its Derivatives on Lipid Peroxidation in Mitochondria. Free Radical Biology and Medicine, 1997, 23, 1046-1054.	2.9	49
72	Water Increases the Fluidity of Intercellular Membranes of Stratum Corneum: Correlation with Water Permeability, Elastic, and Electrical Resistance Properties. Journal of Investigative Dermatology, 1996, 106, 1058-1063.	0.7	126

#	Article	IF	CITATIONS
73	Effect of hydration upon the fluidity of intercellular membranes of stratum corneum: an EPR study. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1237, 6-15.	2.6	54
74	Spin—lattice relaxation of a nitroxide radical in a single crystal. Chemical Physics Letters, 1992, 199, 111-118.	2.6	3
75	Single-crystal ESR studies of a nitroxide radical. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1987, 9, 227-245.	0.4	3
76	Single crystal ESR studies of a nitroxide spin label. I. Determination of the G and A tensors. Journal of Chemical Physics, 1983, 79, 1176-1184.	3.0	25
77	Synthesis, Antileishmanial Activity and Spin Labeling EPR Studies of Novel \hat{I}^2 -Carboline-Oxazoline and \hat{I}^2 -Carboline-Dihydrooxazine Derivatives. Journal of the Brazilian Chemical Society, 0, , .	0.6	3
78	<i>Paracoccidioides brasiliensis</i> plasma membrane characterization by EPR spectroscopy and interactions with amphotericin B, miltefosine and nerolidol. Journal of Biomolecular Structure and Dynamics, 0, , 1-11.	3 . 5	1