Koen Binnemans

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9464155/koen-binnemans-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 30,981 564 153 h-index g-index citations papers 8.11 5.8 589 34,244 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
564	Recovery of copper, zinc and lead from photovoltaic panel residue <i>RSC Advances</i> , 2022 , 12, 2351-2360	3.7	O
563	Continuous Counter-Current Ionic Liquid Metathesis in Mixer-Settlers: Efficiency Analysis and Comparison with Batch Operation ACS Sustainable Chemistry and Engineering, 2022, 10, 946-955	8.3	O
562	Recovery of cobalt from lithium-ion battery cathode material by combining solvoleaching and solvent extraction. <i>Green Chemistry</i> , 2022 , 24, 2839-2852	10	3
561	Separation of heavy rare-earth elements by non-aqueous solvent extraction: Flowsheet development and mixer-settler tests. <i>Separation and Purification Technology</i> , 2022 , 290, 120882	8.3	1
560	Combined HydroBolvoBioleaching Approach toward the Valorization of a Sulfidic Copper Mine Tailing. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 684-693	3.9	O
559	Solvometallurgical Process for the Recovery of Tungsten from Scheelite. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 754-764	3.9	3
558	Gamma radiolytic stability of the novel modified diglycolamide 2,2'-oxybis(,-didecylpropanamide) (mTDDGA) for grouped actinide extraction <i>RSC Advances</i> , 2022 , 12, 12416-12426	3.7	1
557	Effect of polar molecular organic solvents on non-aqueous solvent extraction of rare-earth elements. <i>Separation and Purification Technology</i> , 2022 , 294, 121197	8.3	O
556	Conventional versus microwave-assisted roasting of sulfidic tailings: Mineralogical transformation and metal leaching behavior. <i>Minerals Engineering</i> , 2022 , 183, 107587	4.9	2
555	Separation of cobalt and nickel via solvent extraction with Cyanex-272: Batch experiments and comparison of mixer-settlers and an agitated column as contactors for continuous counter-current extraction. <i>Separation and Purification Technology</i> , 2022 , 296, 121326	8.3	3
554	Liquid-liquid mass transfer in microfluidic reactors: assumptions and realities of non-ideal systems. <i>Chemical Engineering Science</i> , 2021 , 117232	4.4	1
553	Dosimetry and methodology of gamma irradiation for degradation studies on solvent extraction systems. <i>Radiochimica Acta</i> , 2021 , 109, 61-72	1.9	2
552	Nonaqueous Solvent Extraction for Enhanced Metal Separations: Concept, Systems, and Mechanisms <i>Industrial & Description of the Mechanisms of the Mechanis</i>	3.9	4
551	Hard-Soft Interactions in Solvent Extraction with Basic Extractants: Comparing Zinc and Cadmium Halides. <i>ACS Omega</i> , 2021 , 6, 27924-27935	3.9	1
550	Solvometallurgical Recovery of Platinum Group Metals from Spent Automotive Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 337-350	8.3	9
549	Oxidative Dissolution of Metals in Organic Solvents. <i>Chemical Reviews</i> , 2021 , 121, 4506-4530	68.1	10
548	Antimony Recovery from Lead-Rich Dross of Lead Smelter and Conversion into Antimony Oxide Chloride (Sb4O5Cl2). <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 5074-5084	8.3	3

(2021-2021)

Thermodynamic Modeling of Salting Effects in Solvent Extraction of Cobalt(II) from Chloride Media by the Basic Extractant Methyltrioctylammonium Chloride. <i>ACS Omega</i> , 2021 , 6, 11355-11366	3.9	4	
Determination of Chlorides in Ionic Liquids by Wavelength Dispersive X-ray Fluorescence Spectrometry. <i>ACS Omega</i> , 2021 , 6, 13620-13625	3.9	2	
Non-equilibrium solvent extraction in milliflow reactors: Precious and base metal separations with undiluted ionic liquids. <i>Separation and Purification Technology</i> , 2021 , 265, 118490	8.3	1	
Mechanism of Ferric Chloride Facilitating Efficient Lithium Extraction from Magnesium-Rich Brine with Tri-n-butyl Phosphate. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 8538-8547	3.9	2	
Integrated Process for Recovery of Rare-Earth Elements from Lamp Phosphor Waste Using Methanesulfonic Acid. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 10319-10326	3.9	5	
Solvometallurgical process for the recovery of rare-earth elements from NdHeB magnets. <i>Separation and Purification Technology</i> , 2021 , 258, 117800	8.3	11	
Chromatographic separation of rare earths from aqueous and ethanolic leachates of NdFeB and SmCo magnets by a supported ionic liquid phase <i>RSC Advances</i> , 2021 , 11, 8207-8217	3.7	4	
Removal of Cadmium, Zinc, and Manganese from Dilute Aqueous Solutions by Foam Separation. <i>Journal of Sustainable Metallurgy</i> , 2021 , 7, 78-86	2.7	4	
Electrodeposition of neodymium and dysprosium from organic electrolytes. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 9070-9079	3.6	8	
Synthesis of polyaramids in Evalerolactone-based organic electrolyte solutions. <i>Green Chemistry</i> , 2021 , 23, 1228-1239	10	3	
Structural effects of neutral organophosphorus extractants on solvent extraction of rare-earth elements from aqueous and non-aqueous nitrate solutions. <i>Separation and Purification Technology</i> , 2021 , 255, 117711	8.3	14	
Electrochemical behavior and electrodeposition of gallium in 1,2-dimethoxyethane-based electrolytes. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 15492-15502	3.6	O	
Ethylammonium nitrate enhances the extraction of transition metal nitrates by tributyl phosphate (TBP). <i>AICHE Journal</i> , 2021 , 67, e17213	3.6	2	
Opposite selectivities of tributyl phosphate and Cyanex 923 in solvent extraction of lithium and magnesium. <i>AICHE Journal</i> , 2021 , 67, e17219	3.6	5	
N-butyl pyrrolidone/ionic liquid mixtures as benign alternative solvents to N-methyl pyrrolidone for the synthesis of polyaramids. <i>Materials Today Communications</i> , 2021 , 102843	2.5		
Closed-loop process for recovery of metals from NdFeB magnets using a trichloride ionic liquid. Separation and Purification Technology, 2021 , 275, 119158	8.3	O	
Selective extraction of trivalent actinides using CyMeBTPhen in the ionic liquid Aliquat-336 nitrate <i>RSC Advances</i> , 2021 , 11, 6014-6021	3.7	1	
Dissolution behavior of precious metals and selective palladium leaching from spent automotive catalysts by trihalide ionic liquids <i>RSC Advances</i> , 2021 , 11, 10110-10120	3.7	2	
	by the Basic Extractant Methyltrioctylammonium Chloride. ACS Omega, 2021, 6, 11355-11366 Determination of Chlorides in Ionic Liquids by Wavelength Dispersive X-ray Fluorescence Spectrometry. ACS Omega, 2021, 6, 13620-13625 Non-equilibrium solvent extraction in milliflow reactors: Precious and base metal separations with undifued ionic liquids. Separation and Purification Technology, 2021, 265, 118490 Mechanism of Ferric Chloride Facilitating Efficient Lithium Extraction from Magnesium-Rich Brine with Tri-n-butyl Phosphate. Industrial 8amp; Engineering Chemistry Research, 2021, 60, 8538-8547 Integrated Process for Recovery of Rare-Earth Elements from Lamp Phosphor Waste Using Methanesulfonic Acid. Industrial 8amp; Engineering Chemistry Research, 2021, 60, 10319-10326 Solvometallurgical process for the recovery of rare-earth elements from NdBeB magnets. Separation and Purification Technology, 2021, 258, 117800 Chromatographic separation of rare earths from aqueous and ethanolic leachates of NdFeB and SmcCo magnets by a supported ionic liquid phase. RSC Advances, 2021, 11, 8207-8217 Removal of Cadmium, Zinc, and Manganese from Dilute Aqueous Solutions by Foam Separation. Journal of Sustainable Metallurgy, 2021, 7, 78-86 Electrodeposition of neodymium and dysprosium from organic electrolytes. Physical Chemistry Chemical Physics, 2021, 23, 9070-9079 Synthesis of polyaramids in Bualerolactone-based organic electrolyte solutions. Green Chemistry, 2021, 23, 1228-1239 Structural effects of neutral organophosphorus extractants on solvent extraction of rare-earth elements from aqueous and non-aqueous nitrate solutions. Separation and Purification Technology, 2021, 255, 117711 Electrochemical behavior and electrodeposition of gallium in 1,2-dimethoxyethane-based electrolytes. Physical Chemistry Chemical Physics, 2021, 23, 15492-15502 Ethylammonium nitrate enhances the extraction of transition metal nitrates by tri-butyl phosphate (TBP). AICHE Journal, 2021, 67, e17219 N-butyl pyrrolidone/ionic liquid mixtures	by the Basic Extractant Methyltrioctylammonium Chloride. ACS Omega, 2021, 6, 11355-11366 Determination of Chlorides in Ionic Liquids by Wavelength Dispersive X-ray Fluorescence Spectrometry. ACS Omega, 2021, 6, 13620-13625 Non-equilibrium solvent extraction in milliflow reactors: Precious and base metal separations with undiluted ionic liquids. Separation and Purification Technology, 2021, 265, 118490 Mechanism of Ferric Chloride Facilitating Efficient Lithium Extraction from Magnesium-Rich Brine with Trin-butyl Phosphate. Industrial Ramp: Engineering Chemistry Research, 2021, 60, 8538-8547 Integrated Process for Recovery of Rare-Earth Elements from Lamp Phosphor Waste Using Methanesulfonic Acid. Industrial Ramp: Engineering Chemistry Research, 2021, 60, 10319-10326 Solvometallurgical process for the recovery of rare-earth elements from NdfleB magnets. Separation and Purification Technology, 2021, 258, 117800 Chromatographic separation of rare earths from aqueous and ethanolic leachates of NdFeB and SmCo magnets by a supported ionic liquid phase. RSC Advances, 2021, 11, 8207-8217 Removal of Cadmium, Zinc, and Manganese from Dilute Aqueous Solutions by Foam Separation. Journal of Sustainable Metallurgy, 2021, 7, 78-86 Electrodeposition of neodymium and dysprosium from organic electrolytes. Physical Chemistry Chemical Physics, 2021, 23, 9070-9079 Synthesis of polyaramids in Byalerolactone-based organic electrolyte solutions. Green Chemistry, 2021, 23, 1228-1239 Structural effects of neutral organophosphorus extractants on solvent extraction of rare-earth elements from aqueous and non-aqueous nitrate solutions. Separation and Purification Technology, 2021, 255, 117711 Electrochemical behavior and electrodeposition of gallium in 1,2-dimethoxyethane-based electrolytes. Physical Chemistry Chemical Physics, 2021, 23, 15492-15502 Ethylammonium nitrate enhances the extraction of transition metal nitrates by tri-butyl phosphate (TBP). AICHE Journal, 2021, 67, e17213 Opposite selectivities of tri-butyl phosp	by the Basic Extractant Methyltrioctylammonium Chloride, ACS Omega, 2021, 6, 11355-11366 39 4 Determination of Chlorides in Ionic Liquids by Wavelength Dispersive X-ray Fluorescence Spectrometry, ACS Omega, 2021, 6, 13620-13625 Non-equilibrium solvent extraction in milliflow reactors: Precious and base metal separations with undiluted ionic liquids. Separation and Purification Technology, 2021, 265, 118490 Mechanism of Ferric Chloride Facilitating Efficient Lithium Extraction from Magnesium-Rich Brine with Trin-butyl Phosphate. Industrial Ramp; Engineering Chemistry Research, 2021, 60, 8538-8547 Integrated Process for Recovery of Rare-Earth Elements from Lamp Phosphor Waste Using Methanesulfonic Acid. Industrial Ramp; Engineering Chemistry Research, 2021, 60, 10319-10326 Solvometallurgical process for the recovery of rare-earth elements from NdFeB magnets. Separation and Purification Technology, 2021, 258, 117800 Chromatographic separation of rare earths from aqueous and ethanolic leachates of NdFeB and SmCo magnets by a supported ionic liquid phase. RSC Advances, 2021, 11, 8207-8217 Removal of Cadmium, Zinc, and Manganese from Dilute Aqueous Solutions by Foam Separation. 2-7 4 Electrodeposition of neodymium and dysprosium from organic electrolytes. Physical Chemistry Chemical Physics, 2021, 23, 9070-9079 Synthesis of polyaramids in Balerolactone-based organic electrolyte solutions. Green Chemistry, 2021, 23, 1228-1239 Structural effects of neutral organophosphorus extractants on solvent extraction of rare-earth elements from aqueous and non-aqueous nitrate solutions. Separation and Purification Technology, 2021, 255, 117711 Electrochemical behavior and electrodeposition of gallium in 1,2-dimethoxyethane-based electrolytes. Physical Chemistry Chemical Physics, 2021, 23, 14392-15502 Ethylammonium nitrate enhances the extraction of transition metal nitrates by tri-butyl phosphate (TBP). AICHE Journal, 2021, 67, e17213 Opposite selectivities of tri-butyl phosphate and Cyanex 923 in solvent extraction

529	Image analysis data for the study of the reactivity of the phases in Nd-Fe-B magnets etched with HCl-saturated Cyphos IL 101. <i>Data in Brief</i> , 2020 , 32, 106203	1.2	
528	Reversible electrodeposition and stripping of magnesium from solvate ionic liquid-tetrabutylammonium chloride mixtures <i>RSC Advances</i> , 2020 , 10, 42021-42029	3.7	2
527	Extraction Behavior and Separation of Precious and Base Metals from Chloride, Bromide, and Iodide Media Using Undiluted Halide Ionic Liquids. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 8223-8234	8.3	15
526	Fabrication of Nd- and Ce-doped uranium dioxide microspheres via internal gelation. <i>Journal of Nuclear Materials</i> , 2020 , 535, 152128	3.3	4
525	Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: technology development trends. <i>Resources, Conservation and Recycling</i> , 2020 , 160, 104919	11.9	57
524	Effects of thiol substitution in deep-eutectic solvents (DESs) as solvents for metal oxides <i>RSC Advances</i> , 2020 , 10, 23484-23490	3.7	11
523	Dissolution of noble metals in highly concentrated acidic salt solutions. <i>Chemical Communications</i> , 2020 , 56, 8230-8232	5.8	13
522	One-pot synthesis of symmetric imidazolium ionic liquids ,-disubstituted with long alkyl chains <i>RSC Advances</i> , 2020 , 10, 21071-21081	3.7	3
521	Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents. <i>Green Chemistry</i> , 2020 , 22, 4210-4221	10	61
520	Hydration counteracts the separation of lanthanides by solvent extraction. AICHE Journal, 2020, 66, e1	65,45	11
519	Physicochemical study of diethylmethylammonium methanesulfonate under anhydrous conditions. <i>Journal of Chemical Physics</i> , 2020 , 152, 234504	3.9	5
518	Highly Soluble 1,4-Diaminoanthraquinone Derivative for Nonaqueous Symmetric Redox Flow Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 3832-3843	8.3	21
517	Selective recovery of zinc from goethite residue in the zinc industry using deep-eutectic solvents <i>RSC Advances</i> , 2020 , 10, 7328-7335	3.7	22
516	Extraction of gallium from simulated Bayer process liquor by Kelex 100 dissolved in ionic liquids. <i>Dalton Transactions</i> , 2020 , 49, 3532-3544	4.3	8
515	Selective Extraction of Americium from Curium and the Lanthanides by the Lipophilic Ligand CyMe4BTPhen Dissolved in Aliquat-336 Nitrate Ionic Liquid. <i>Solvent Extraction and Ion Exchange</i> , 2020 , 38, 194-211	2.5	11
514	Cerium-containing complexes for low-cost, non-aqueous redox flow batteries (RFBs). <i>Journal of Power Sources</i> , 2020 , 450, 227634	8.9	7
513	Gamma Radiolysis of TODGA and CyMe4BTPhen in the Ionic Liquid Tri-n-Octylmethylammonium Nitrate. <i>Solvent Extraction and Ion Exchange</i> , 2020 , 38, 212-235	2.5	12
512	Selective leaching of lead from lead smelter residues using EDTA RSC Advances, 2020 , 10, 42147-4215	663.7	3

(2020-2020)

511	Recovery of valuable metals from NdFeB magnets by mechanochemically assisted ferric sulfate leaching. <i>Hydrometallurgy</i> , 2020 , 191, 105154	4	10	
510	The conversion of ammonium uranate prepared via sol-gel synthesis into uranium oxides. <i>Nuclear Engineering and Technology</i> , 2020 , 52, 1013-1021	2.6	7	
509	Selective Roasting of NdHe-B Permanent Magnets as a Pretreatment Step for Intensified Leaching with an Ionic Liquid. <i>Journal of Sustainable Metallurgy</i> , 2020 , 6, 91-102	2.7	9	
508	Solvometallurgical process for extraction of copper from chalcopyrite and other sulfidic ore minerals. <i>Green Chemistry</i> , 2020 , 22, 417-426	10	23	
507	Alkali baking and solvometallurgical leaching of NdFeB magnets. <i>Hydrometallurgy</i> , 2020 , 191, 105213	4	13	
506	Solvent Extraction Studies for the Separation of Trivalent Actinides from Lanthanides with a Triazole-functionalized 1,10-phenanthroline Extractant. <i>Solvent Extraction and Ion Exchange</i> , 2020 , 38, 719-734	2.5	5	
505	Selective Removal of Zinc from BOF Sludge by Leaching with Mixtures of Ammonia and Ammonium Carbonate. <i>Journal of Sustainable Metallurgy</i> , 2020 , 6, 680-690	2.7	6	
504	Structural changes of Nd- and Ce-doped ammonium diuranate microspheres during the conversion to U1InO2\(\text{D}\). Journal of Nuclear Materials, 2020 , 542, 152454	3.3	1	
503	Separation of precious metals by split-anion extraction using water-saturated ionic liquids. <i>Green Chemistry</i> , 2020 , 22, 8375-8388	10	12	
502	Hydrometallurgical Processes for the Recovery of Metals from Steel Industry By-Products: A Critical Review. <i>Journal of Sustainable Metallurgy</i> , 2020 , 6, 505-540	2.7	16	
501	Enhancing the solubility of 1,4-diaminoanthraquinones in electrolytes for organic redox flow batteries through molecular modification <i>RSC Advances</i> , 2020 , 10, 39601-39610	3.7	1	
500	Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid-choline chloride <i>RSC Advances</i> , 2020 , 10, 28879-28890	3.7	16	
499	Stability of ionic liquids in Brfisted-basic media. <i>Green Chemistry</i> , 2020 , 22, 5225-5252	10	19	
498	Separation of Scandium from Hydrochloric Acid-Ethanol Leachate of Bauxite Residue by a Supported Ionic Liquid Phase. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 15332-15342	3.9	5	
497	Selection criteria of diluents of tri-n-butyl phosphate for recovering neodymium(III) from nitrate solutions. <i>Chemical Engineering Research and Design</i> , 2020 , 161, 304-311	5.5	3	
496	Non-aqueous solvent extraction of indium from an ethylene glycol feed solution by the ionic liquid Cyphos IL 101: speciation study and continuous counter-current process in mixer-settlers <i>RSC Advances</i> , 2020 , 10, 24595-24612	3.7	9	
495	Solvent Extraction of Gold(III) with Diethyl Carbonate. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 13713-13723	8.3	11	
494	Ammoniacal Solvoleaching of Copper from High-Grade Chrysocolla. <i>Journal of Sustainable Metallurgy</i> , 2020 , 6, 589-598	2.7	2	

493	Indium electrodeposition from indium(iii) methanesulfonate in DMSO. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 24526-24534	3.6	3
492	Cation Effect of Chloride Salting Agents on Transition Metal Ion Hydration and Solvent Extraction by the Basic Extractant Methyltrioctylammonium Chloride. <i>Inorganic Chemistry</i> , 2020 , 59, 13442-13452	5.1	7
491	Separation of iron(iii), zinc(ii) and lead(ii) from a choline chloride-ethylene glycol deep eutectic solvent by solvent extraction <i>RSC Advances</i> , 2020 , 10, 33161-33170	3.7	12
490	EValerolactone-based organic electrolyte solutions: a benign approach to polyaramid dissolution and processing. <i>Green Chemistry</i> , 2020 , 22, 6127-6136	10	6
489	Enhanced Separation of Neodymium and Dysprosium by Nonaqueous Solvent Extraction from a Polyethylene Glycol 200 Phase Using the Neutral Extractant Cyanex 923. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 19032-19039	8.3	10
488	Development of a solvometallurgical process for the separation of yttrium and europium by Cyanex 923 from ethylene glycol solutions. <i>Separation and Purification Technology</i> , 2020 , 235, 116193	8.3	14
487	Supported ionic liquid phases for the separation of samarium and europium in nitrate media: Towards purification of medical samarium-153. <i>Separation and Purification Technology</i> , 2020 , 232, 1159	3⁸ ·3	9
486	Selective removal of magnesium from lithium-rich brine for lithium purification by synergic solvent extraction using 刪iketones and Cyanex 923. <i>AICHE Journal</i> , 2020 , 66, e16246	3.6	13
485	Recycling of bonded NdFeB permanent magnets using ionic liquids. <i>Green Chemistry</i> , 2020 , 22, 2821-28	3 0 0	12
484	Radiochemical processing of nuclear-reactor-produced radiolanthanides for medical applications. <i>Coordination Chemistry Reviews</i> , 2019 , 382, 103-125	23.2	13
483	Methanesulfonic acid: a sustainable acidic solvent for recovering metals from the jarosite residue of the zinc industry. <i>Green Chemistry</i> , 2019 , 21, 5394-5404	10	22
482	Model for Metal Extraction from Chloride Media with Basic Extractants: A Coordination Chemistry Approach. <i>Inorganic Chemistry</i> , 2019 , 58, 12289-12301	5.1	31
481	Effect of Magnetic Susceptibility Gradient on the Magnetomigration of Rare-Earth Ions. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 23131-23139	3.8	6
480	Stability of europium(ii) in aqueous nitrate solutions. <i>Dalton Transactions</i> , 2019 , 48, 14758-14768	4.3	7
479	Integrated process for the recovery of yttrium and europium from CRT phosphor waste <i>RSC Advances</i> , 2019 , 9, 1378-1386	3.7	10
47 ⁸	Selective rare earth element extraction using high-pressure acid leaching of slags arising from the smelting of bauxite residue. <i>Hydrometallurgy</i> , 2019 , 184, 162-174	4	25
477	A Study of the Occurrence of Selected Rare-Earth Elements in Neutralized Leached Bauxite Residue and Comparison with Untreated Bauxite Residue. <i>Journal of Sustainable Metallurgy</i> , 2019 , 5, 57-68	2.7	11
476	p-Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Solubilizing Metal Oxides. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 3940-3948	8.3	53

475	Solvation structure of poly-m-phenyleneisophthalamide (PMIA) in ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 4053-4062	3.6	12
474	Selective Metal Recovery from Jarosite Residue by Leaching with Acid-Equilibrated Ionic Liquids and Precipitation-Stripping. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 4239-4246	8.3	23
473	Recovery of cobalt from dilute aqueous solutions using activated carbon-alginate composite spheres impregnated with Cyanex 272 <i>RSC Advances</i> , 2019 , 9, 18734-18746	3.7	7
472	Separation of GaCl from AlCl by Solid-Liquid Extraction and Stripping Using Anhydrous -Dodecane and NaCl. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 12459-12464	3.9	1
471	Degradation of Deep-Eutectic Solvents Based on Choline Chloride and Carboxylic Acids. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 11521-11528	8.3	100
470	Enhancing Metal Separations by Liquid-Liquid Extraction Using Polar Solvents. <i>Chemistry - A European Journal</i> , 2019 , 25, 9197-9201	4.8	21
469	Removal of metallic coatings from rare-earth permanent magnets by solutions of bromine in organic solvents <i>RSC Advances</i> , 2019 , 9, 14910-14915	3.7	3
468	Enhancing rare-earth recovery from lamp phosphor waste. <i>Hydrometallurgy</i> , 2019 , 187, 38-44	4	36
467	Tuning Solvent Miscibility: A Fundamental Assessment on the Example of Induced Methanol/n-Dodecane Phase Separation. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 4400-4407	3.4	3
466	Selective recovery of germanium from iron-rich solutions using a supported ionic liquid phase (SILP). <i>Separation and Purification Technology</i> , 2019 , 221, 83-92	8.3	11
465	Solvometallurgical route for the recovery of Sm, Co, Cu and Fe from SmCo permanent magnets. <i>Separation and Purification Technology</i> , 2019 , 219, 281-289	8.3	22
464	Electrodeposition of indium from non-aqueous electrolytes. Chemical Communications, 2019, 55, 4789-4	43992	7
463	Yttrium and europium separation by solvent extraction with undiluted thiocyanate ionic liquids <i>RSC Advances</i> , 2019 , 9, 4876-4883	3.7	16
462	Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. <i>Separation and Purification Technology</i> , 2019 , 210, 209-218	8.3	43
461	Enhancing Metal Separations Using Hydrophilic Ionic Liquids and Analogues as Complexing Agents in the More Polar Phase of Liquid-Liquid Extraction Systems. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 15628-15636	3.9	18
460	Recovery of Gallium, Indium, and Arsenic from Semiconductors Using Tribromide Ionic Liquids. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 14451-14459	8.3	20
459	Isolation of molybdenum(VI) from simulated leachates of irradiated uranium-aluminum targets using diluted and undiluted sulfate ionic liquids. <i>Green Chemistry</i> , 2019 , 21, 3948-3960	10	4
458	Metal Recovery from Spent Samarium-Cobalt Magnets Using a Trichloride Ionic Liquid. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 2578-2584	8.3	43

457	Efficient and Sustainable Removal of Magnesium from Brines for Lithium/Magnesium Separation Using Binary Extractants. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 19225-19234	8.3	21
456	Recovery of Lead and Silver from Zinc Leaching Residue Using Methanesulfonic Acid. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 19807-19815	8.3	13
455	Separation of neodymium and dysprosium by solvent extraction using ionic liquids combined with neutral extractants: batch and mixer-settler experiments <i>RSC Advances</i> , 2019 , 10, 307-316	3.7	21
454	Electrodeposition of indium from the ionic liquid trihexyl(tetradecyl)phosphonium chloride. <i>Green Chemistry</i> , 2019 , 21, 1517-1530	10	19
453	Recovery of Rare Earths from Bauxite Residue (Red Mud). World Scientific Series in Current Energy Issues, 2019 , 343-356	0.2	2
452	Synthesis of Guerbet ionic liquids and extractants as 即ranched biosourceable hydrophobes. Organic and Biomolecular Chemistry, 2019 , 17, 9778-9791	3.9	5
451	Selective ion-exchange separation of scandium(III) over iron(III) by crystalline ∃-zirconium phosphate platelets under acidic conditions. <i>Separation and Purification Technology</i> , 2019 , 215, 81-90	8.3	19
450	Recovery of rare earths from waste cathode ray tube (CRT) phosphor powder by selective sulfation roasting and water leaching. <i>Hydrometallurgy</i> , 2019 , 183, 60-70	4	19
449	Studies on the Thoria Fuel Recycling Loop Using Triflic Acid: Effects of Powder Characteristics, Solution Acidity, and Radium Behavior. <i>Journal of Sustainable Metallurgy</i> , 2019 , 5, 118-126	2.7	1
448	Selective recovery of indium from iron-rich solutions using an Aliquat 336 iodide supported ionic liquid phase (SILP). <i>Separation and Purification Technology</i> , 2019 , 212, 843-853	8.3	22
447	Metal coordination in the high-temperature leaching of roasted NdFeB magnets with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide <i>RSC Advances</i> , 2018 , 8, 9299-9310	3.7	19
446	Rare Earths and the Balance Problem: How to Deal with Changing Markets?. <i>Journal of Sustainable Metallurgy</i> , 2018 , 4, 126-146	2.7	115
445	Selective Substitution of POCl3 with Organometallic Reagents: Synthesis of Phosphinates and Phosphonates. <i>Synthesis</i> , 2018 , 50, 2019-2026	2.9	6
444	Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching. <i>Minerals Engineering</i> , 2018 , 119, 82-92	4.9	81
443	Fluorine-functionalized ionic liquids with high oxygen solubility RSC Advances, 2018, 8, 4525-4530	3.7	18
442	Selective electrochemical extraction of REEs from NdFeB magnet waste at room temperature. <i>Green Chemistry</i> , 2018 , 20, 1065-1073	10	34
441	Solvation Structure of Sodium Bis(fluorosulfonyl)imide-Glyme Solvate Ionic Liquids and Its Influence on Cycling of Na-MNC Cathodes. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 275-289	3.4	30
440	Ionic liquids with trichloride anions for oxidative dissolution of metals and alloys. <i>Chemical Communications</i> , 2018 , 54, 475-478	5.8	39

(2018-2018)

439	Ethylenediaminetriacetic Acid-Functionalized Activated Carbon for the Adsorption of Rare Earths from Aqueous Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 1487-1497	3.9	42	
438	Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries. <i>Journal of Power Sources</i> , 2018 , 378, 338-344	8.9	29	
437	Thermal stability of trihexyl(tetradecyl)phosphonium chloride. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 2444-2456	3.6	31	
436	Efficient separation of rare earths recovered by a supported ionic liquid from bauxite residue leachate <i>RSC Advances</i> , 2018 , 8, 11886-11893	3.7	24	
435	Cobalt(ii) liquid metal salts for high current density electrodeposition of cobalt. <i>Dalton Transactions</i> , 2018 , 47, 4975-4986	4.3	6	
434	Low-Temperature Oxidation of Fine UO Powders: Thermochemistry and Kinetics. <i>Inorganic Chemistry</i> , 2018 , 57, 4196-4204	5.1	2	
433	Separation of transition metals from rare earths by non-aqueous solvent extraction from ethylene glycol solutions using Aliquat 336. <i>Separation and Purification Technology</i> , 2018 , 201, 318-326	8.3	41	
432	Effect of the diluent on the solvent extraction of neodymium(III) by bis(2-ethylhexyl)phosphoric acid (D2EHPA). <i>Hydrometallurgy</i> , 2018 , 177, 146-151	4	25	
431	Trihalide ionic liquids as non-volatile oxidizing solvents for metals. <i>Green Chemistry</i> , 2018 , 20, 3327-333	8 10	36	
430	Combined multi-step precipitation and supported ionic liquid phase chromatography for the recovery of rare earths from leach solutions of bauxite residues. <i>Hydrometallurgy</i> , 2018 , 180, 229-235	4	21	
429	Recovery of rare earths from the green lamp phosphor LaPO:Ce,Tb (LAP) by dissolution in concentrated methanesulphonic acid <i>RSC Advances</i> , 2018 , 8, 26349-26355	3.7	29	
428	Mechanism for Solvent Extraction of Lanthanides from Chloride Media by Basic Extractants. <i>Journal of Solution Chemistry</i> , 2018 , 47, 1351-1372	1.8	11	
427	Separation of samarium and europium by solvent extraction with an undiluted quaternary ammonium ionic liquid: towards high-purity medical samarium-153 <i>RSC Advances</i> , 2018 , 8, 20077-2008	16 ^{3.7}	22	
426	Purification of crude In(OH)3 using the functionalized ionic liquid betainium bis(trifluoromethylsulfonyl)imide. <i>Green Chemistry</i> , 2018 , 20, 412-424	10	17	
425	Synthesis of Poly-p-phenylene Terephthalamide (PPTA) in Ionic Liquids. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 1362-1369	8.3	24	
424	Solvent Extraction of Am(III), Cm(III), and Ln(III) Ions from Simulated Highly Active Raffinate Solutions by TODGA Diluted in Aliquat-336 Nitrate Ionic Liquid. <i>Solvent Extraction and Ion Exchange</i> , 2018 , 36, 519-541	2.5	20	
423	Split-anion solvent extraction of light rare earths from concentrated chloride aqueous solutions to nitrate organic ionic liquids <i>RSC Advances</i> , 2018 , 8, 34754-34763	3.7	15	
422	Magnetophoretic Sprinting: A Study on the Magnetic Properties of Aqueous Lanthanide Solutions. Journal of Physical Chemistry C, 2018 , 122, 23675-23682	3.8	10	

421	Speciation of lanthanide ions in the organic phase after extraction from nitrate media by basic extractants. <i>RSC Advances</i> , 2018 , 8, 32044-32054	3.7	21
420	Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery. <i>Engineering</i> , 2018 , 4, 398-405	9.7	20
419	Selective Extraction of Rare-Earth Elements from NdFeB Magnets by a Room-Temperature Electrolysis Pretreatment Step. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 9375-9382	8.3	28
418	Multi-Gram Scale Synthesis of 1,2,3-Triazolium Ionic Liquids and Assay of Their Resistance towards Bases. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 4850-4856	3.2	12
417	Docusate Ionic Liquids: Effect of Cation on Water Solubility and Solvent Extraction Behavior. <i>ChemPlusChem</i> , 2017 , 82, 458-466	2.8	15
416	Manganese-containing ionic liquids: synthesis, crystal structures and electrodeposition of manganese films and nanoparticles. <i>Dalton Transactions</i> , 2017 , 46, 2497-2509	4.3	10
415	Synthesis of gadolinium-doped thorium dioxide via a wet chemical route: Limitations of the co-precipitation method. <i>Journal of Nuclear Materials</i> , 2017 , 489, 211-221	3.3	7
414	Solvometallurgy: An Emerging Branch of Extractive Metallurgy. <i>Journal of Sustainable Metallurgy</i> , 2017 , 3, 570-600	2.7	117
413	Recovery of Rare Earths and Major Metals from Bauxite Residue (Red Mud) by Alkali Roasting, Smelting, and Leaching. <i>Journal of Sustainable Metallurgy</i> , 2017 , 3, 393-404	2.7	46
412	Process development for hydrometallurgical recovery of valuable metals from sulfide-rich residue generated in a secondary lead smelter. <i>Hydrometallurgy</i> , 2017 , 169, 589-598	4	8
411	A non-aqueous all-copper redox flow battery with highly soluble active species. <i>Electrochimica Acta</i> , 2017 , 236, 116-121	6.7	26
410	Selective alkaline stripping of metal ions after solvent extraction by base-stable 1,2,3-triazolium ionic liquids. <i>Dalton Transactions</i> , 2017 , 46, 5269-5278	4.3	16
409	Direct Analysis of Metal Ions in Solutions with High Salt Concentrations by Total Reflection X-ray Fluorescence. <i>Analytical Chemistry</i> , 2017 , 89, 4595-4603	7.8	28
408	Polymerization of PPTA in Ionic Liquid/Cosolvent Mixtures. <i>Macromolecules</i> , 2017 , 50, 3089-3100	5.5	13
407	Recycling of rare earths from lamp phosphor waste: Enhanced dissolution of LaPO 4 :Ce 3+ ,Tb 3+ by mechanical activation. <i>Journal of Cleaner Production</i> , 2017 , 156, 226-234	10.3	37
406	Metal extraction with a short-chain imidazolium nitrate ionic liquid. <i>Chemical Communications</i> , 2017 , 53, 5271-5274	5.8	27
405	Speciation of indium(iii) chloro complexes in the solvent extraction process from chloride aqueous solutions to ionic liquids. <i>Dalton Transactions</i> , 2017 , 46, 4412-4421	4.3	29
404	Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide. <i>Separation and Purification Technology</i> , 2017 , 176, 208-219	8.3	69

(2017-2017)

403	High-speed electrodeposition of copper-tin-zinc stacks from liquid metal salts for CuZnSnSe solar cells. <i>Chemical Communications</i> , 2017 , 53, 913-916	5.8	9
402	Recovery of scandium(III) from diluted aqueous solutions by a supported ionic liquid phase (SILP). <i>RSC Advances</i> , 2017 , 7, 49664-49674	3.7	25
401	Titanium alkylphosphate functionalised mesoporous silica for enhanced uptake of rare-earth ions. Journal of Materials Chemistry A, 2017 , 5, 23805-23814	13	12
400	Magnetomigration of Rare-Earth lons Triggered by Concentration Gradients. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5301-5305	6.4	16
399	Separation of rare-earth ions from ethylene glycol (+LiCl) solutions by non-aqueous solvent extraction with Cyanex 923. <i>RSC Advances</i> , 2017 , 7, 45351-45362	3.7	26
398	The EURARE Project: Development of a Sustainable Exploitation Scheme for Europe® Rare Earth Ore Deposits. <i>Johnson Matthey Technology Review</i> , 2017 , 61, 142-153	2.5	20
397	Cobalt(II)/nickel(II) separation from sulfate media by solvent extraction with an undiluted quaternary phosphonium ionic liquid. <i>RSC Advances</i> , 2017 , 7, 35992-35999	3.7	35
396	Electrodeposition of germanium-containing precursors for Cu2(Sn,Ge)S3 thin film solar cells. <i>Electrochimica Acta</i> , 2017 , 251, 651-659	6.7	4
395	Cobalt(ii) containing liquid metal salts for electrodeposition of cobalt and electrochemical nanoparticle formation. <i>Dalton Transactions</i> , 2017 , 46, 12845-12855	4.3	7
394	Electrodeposition of bismuth telluride thin films containing silica nanoparticles for thermoelectric applications. <i>Electrochimica Acta</i> , 2017 , 253, 554-562	6.7	5
393	Neutralisation of bauxite residue by carbon dioxide prior to acidic leaching for metal recovery. <i>Minerals Engineering</i> , 2017 , 112, 92-102	4.9	29
392	Closed-loop solvometallurgical process for recovery of lead from iron-rich secondary lead smelter residues. <i>RSC Advances</i> , 2017 , 7, 49999-50005	3.7	12
391	Separation of rare earths and other valuable metals from deep-eutectic solvents: a new alternative for the recycling of used NdFeB magnets. <i>RSC Advances</i> , 2017 , 7, 32100-32113	3.7	73
390	Multifunctional AlginateBulfonateBilica Sphere-Shaped Adsorbent Particles for the Recovery of Indium(III) from Secondary Resources. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 8677-8	s <i>€</i> 88	8
389	Use of Triflic Acid in the Recycling of Thoria from Nuclear Fuel Production Scrap. <i>Journal of Sustainable Metallurgy</i> , 2017 , 3, 659-667	2.7	4
388	Non-aqueous solvent extraction of rare-earth nitrates from ethylene glycol to n-dodecane by Cyanex 923. <i>Separation and Purification Technology</i> , 2017 , 174, 544-553	8.3	32
387	Nanostructured composites of one-dimensional TiO2 and reduced graphene oxide for efficient dye-sensitized solar cells. <i>Journal of Alloys and Compounds</i> , 2017 , 697, 132-137	5.7	44
386	Separation of Rare Earths by Solvent Extraction with an Undiluted Nitrate Ionic Liquid. <i>Journal of Sustainable Metallurgy</i> , 2017 , 3, 73-78	2.7	24

385	REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. <i>Journal of Sustainable Metallurgy</i> , 2017 , 3, 122-149	2.7	209
384	Chemical immobilization of 8-hydroxyquinoline and 8-hydroxyquinaldine on chitosan-silica adsorbent materials for the selective recovery of gallium from Bayer liquor. <i>Hydrometallurgy</i> , 2017 , 171, 275-284	4	19
383	Antimony recovery from the halophosphate fraction in lamp phosphor waste: a zero-waste approach. <i>Green Chemistry</i> , 2016 , 18, 176-185	10	14
382	Smelting of Bauxite Residue (Red Mud) in View of Iron and Selective Rare Earths Recovery. <i>Journal of Sustainable Metallurgy</i> , 2016 , 2, 28-37	2.7	94
381	Practical guidelines for best practice on Total Reflection X-ray Fluorescence spectroscopy: Analysis of aqueous solutions. <i>Spectrochimica Acta, Part B: Atomic Spectroscopy,</i> 2016 , 124, 109-115	3.1	33
380	Assessment of the UO Crystal Structure by X-ray and Electron Diffraction. <i>Inorganic Chemistry</i> , 2016 , 55, 9923-9936	5.1	15
379	Guanidinium nonaflate as a solid-state proton conductor. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 122	.41 3 122	2536
378	Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue. <i>Jom</i> , 2016 , 68, 2958-2962	2.1	15
377	Photochemical recovery of europium from non-aqueous solutions. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 29961-29968	3.6	10
376	Crystal structure of apatite type Ca2.49Nd7.51(SiO4)6O1.75. <i>Acta Crystallographica Section E: Crystallographic Communications</i> , 2016 , 72, 209-11	0.7	2
375	A mechanism for solvent extraction of first row transition metals from chloride media with the ionic liquid tetraoctylammonium oleate. <i>Dalton Transactions</i> , 2016 , 45, 9661-8	4.3	22
374	Liquid Nickel Salts: Synthesis, Crystal Structure Determination, and Electrochemical Synthesis of Nickel Nanoparticles. <i>Chemistry - A European Journal</i> , 2016 , 22, 1010-20	4.8	15
373	Halogen-free synthesis of symmetrical 1,3-dialkylimidazolium ionic liquids using non-enolisable starting materials. <i>RSC Advances</i> , 2016 , 6, 8848-8859	3.7	21
372	Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosanBilica hybrid materials. <i>Green Chemistry</i> , 2016 , 18, 2005-2013	10	84
371	Electrochemical studies of the electrodeposition of copper-zinc-tin alloys from pyrophosphate electrolytes followed by selenization for CZTSe photovoltaic cells. <i>Electrochimica Acta</i> , 2016 , 188, 344-	3 <i>5</i> 57	20
370	Low-Temperature Oxidation of Fine UO2 Powders: A Process of Nanosized Domain Development. <i>Inorganic Chemistry</i> , 2016 , 55, 3915-27	5.1	17
369	On the electrochemical deposition of metalBrganic frameworks. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3914-3925	13	88
368	Electrodeposition and selenization of brass/tin/germanium multilayers for Cu2Zn(Sn1-xGex)Se4 thin film photovoltaic devices. <i>Electrochimica Acta</i> , 2016 , 198, 104-114	6.7	10

(2015-2016)

367	Antimony Recovery from End-of-Life Products and Industrial Process Residues: A Critical Review. Journal of Sustainable Metallurgy, 2016 , 2, 79-103	2.7	73
366	Activated sintering of ThO2 with Al2O3 under reducing and oxidizing conditions. <i>Journal of Nuclear Materials</i> , 2016 , 470, 34-43	3.3	12
365	Towards an all-copper redox flow battery based on a copper-containing ionic liquid. <i>Chemical Communications</i> , 2016 , 52, 414-7	5.8	24
364	Ionic liquids as solvents for PPTA oligomers. <i>Green Chemistry</i> , 2016 , 18, 1639-1652	10	41
363	Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching. <i>Minerals Engineering</i> , 2016 , 92, 151-159	4.9	109
362	Efficient separation of transition metals from rare earths by an undiluted phosphonium thiocyanate ionic liquid. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 16039-45	3.6	37
361	New metal extractants and super-acidic ionic liquids derived from sulfamic acid. <i>Chemical Communications</i> , 2016 , 52, 7032-5	5.8	20
360	Purification of indium by solvent extraction with undiluted ionic liquids. <i>Green Chemistry</i> , 2016 , 18, 411	6 -4 5127	, ₅₁
359	Effect of sintering atmosphere on the hardness of ThO2. Journal of Nuclear Materials, 2016, 477, 222-2	23.3	6
358	Dual-doped mesoporous carbon synthesized by a novel nanocasting method with superior catalytic activity for oxygen reduction. <i>Nano Energy</i> , 2016 , 26, 131-138	17.1	57
357	Influence of irradiance on the photochemical reduction of europium(III). <i>Green Chemistry</i> , 2016 , 18, 419	08 1 4 204	1 7
356	Alkylsulfuric acid ionic liquids: a promising class of strongly acidic room-temperature ionic liquids. <i>Chemical Communications</i> , 2016 , 52, 4640-3	5.8	18
355	Ionic Liquid Crystals: Versatile Materials. <i>Chemical Reviews</i> , 2016 , 116, 4643-807	68.1	476
354	Biobased Ionic Liquids: Solvents for a Green Processing Industry?. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 2917-2931	8.3	158
353	Magnetomigration of rare-earth ions in inhomogeneous magnetic fields. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 27342-27350	3.6	22
352	Electro-precipitation via oxygen reduction: a new technique for thin film manganese oxide deposition. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13555-13562	13	
351	Recovery of Rare Earths and Other Valuable Metals From Bauxite Residue (Red Mud): A Review. <i>Journal of Sustainable Metallurgy</i> , 2016 , 2, 365-386	2.7	149
350	Rare Earths and the Balance Problem. <i>Journal of Sustainable Metallurgy</i> , 2015 , 1, 29-38	2.7	103

349	Interpretation of europium(III) spectra. Coordination Chemistry Reviews, 2015, 295, 1-45	23.2	1492
348	Recycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf2N]. <i>Green Chemistry</i> , 2015 , 17, 2150-21	63	115
347	Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. <i>Journal of Cleaner Production</i> , 2015 , 99, 17-38	10.3	349
346	Homogeneous liquid-liquid extraction of metal ions with non-fluorinated bis(2-ethylhexyl)phosphate ionic liquids having a lower critical solution temperature in combination with water. <i>Chemical Communications</i> , 2015 , 51, 14183-6	5.8	31
345	Selective Extraction of Metals from Chloride Solutions with the Tetraoctylphosphonium Oleate Ionic Liquid. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 5149-5158	3.9	59
344	Extraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnets. <i>Green Chemistry</i> , 2015 , 17, 2931-	2 ¹⁹ 42	137
343	Mendeleev and the Rare-Earth Crisis. Boston Studies in the Philosophy and History of Science, 2015, 155-1	1822	3
342	Sulfonic acid functionalized ionic liquids for dissolution of metal oxides and solvent extraction of metal ions. <i>Chemical Communications</i> , 2015 , 51, 9006-9	5.8	50
341	Crystal structures of hydrated rare-earth bis(trifluoromethylsulfonyl)imide salts. <i>CrystEngComm</i> , 2015 , 17, 7142-7149	3.3	10
340	Metal Recovery from Nickel Metal Hydride Batteries Using Cyanex 923 in Tricaprylylmethylammonium Nitrate from Chloride Aqueous Media. <i>Journal of Sustainable Metallurgy</i> , 2015 , 1, 161-167	2.7	17
339	MetalBrganic framework deposition on dealloyed substrates. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19747-19753	13	9
338	Lattice contraction and lattice deformation of UO 2 and ThO 2 doped with Gd 2 O 3. <i>Journal of Nuclear Materials</i> , 2015 , 467, 135-143	3.3	13
337	Electrodeposition of germanium at elevated temperatures and pressures from ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 12080-9	3.6	18
336	Separation of cobalt and nickel using a thermomorphic ionic-liquid-based aqueous biphasic system. <i>Chemical Communications</i> , 2015 , 51, 15932-5	5.8	52
335	Solvent Extraction of Scandium(III) by an Aqueous Biphasic System with a Nonfluorinated Functionalized Ionic Liquid. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 8988-8996	3.9	50
334	Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3:Eu3+ from lamp phosphor waste. <i>Green Chemistry</i> , 2015 , 17, 856-868	10	164
333	Cellulose amorphization by swelling in ionic liquid/water mixtures: a combined macroscopic and second-harmonic microscopy study. <i>ChemSusChem</i> , 2015 , 8, 82-6	8.3	10
332	Catalytically active gauze-supported skeletal nickel prepared from Nin alloys electrodeposited from an acetamidelimethyl sulfone eutectic mixture. <i>Catalysis Today</i> , 2015 , 246, 191-197	5.3	4

331	Paired Electrosynthesis of Diacid and Diol Precursors Using Dienes and CO2 as the Carbon Source. <i>ChemElectroChem</i> , 2015 , 2, 73-76	4.3	35
330	Lignin solubility in non-imidazolium ionic liquids. <i>Journal of Chemical Technology and Biotechnology</i> , 2015 , 90, 1821-1826	3.5	54
329	Shaping of AlginateBilica Hybrid Materials into Microspheres through Vibrating-Nozzle Technology and Their Use for the Recovery of Neodymium from Aqueous Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 12836-12846	3.9	37
328	Selective Single-Step Separation of a Mixture of Three Metal Ions by a Triphasic Ionic-Liquid-Water-Ionic-Liquid Solvent Extraction System. <i>Chemistry - A European Journal</i> , 2015 , 21, 11	7 <i>5</i> 47 ⁸ 66	20
327	Separation of rare earths by split-anion extraction. <i>Hydrometallurgy</i> , 2015 , 156, 206-214	4	56
326	Synthesis of UO2 and ThO2 doped with Gd2O3. <i>Journal of Nuclear Materials</i> , 2015 , 461, 271-281	3.3	11
325	Thermochromism and switchable paramagnetism of cobalt(II) in thiocyanate ionic liquids. <i>Dalton Transactions</i> , 2015 , 44, 11286-9	4.3	50
324	Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 6747-57	3.4	110
323	Photochemical recycling of europium from Eu/Y mixtures in red lamp phosphor waste streams. <i>Green Chemistry</i> , 2015 , 17, 2180-2187	10	38
322	Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 2015, 76, 20-27	4.9	280
321	Accurate lattice parameter measurements of stoichiometric uranium dioxide. <i>Journal of Nuclear Materials</i> , 2015 , 459, 135-142	3.3	63
320	Photophysical Property of catena-Bis(thiocyanato)aurate(I) Complexes in Ionic Liquids. <i>Crystal Growth and Design</i> , 2015 , 15, 1422-1429	3.5	10
319	Recovery of Scandium(III) from Aqueous Solutions by Solvent Extraction with the Functionalized Ionic Liquid Betainium Bis(trifluoromethylsulfonyl)imide. <i>Industrial & Discounting Chemistry Research</i> , 2015 , 54, 1887-1898	3.9	96
318	1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells. <i>Energy and Environmental Science</i> , 2015 , 8, 1276-1291	35.4	110
317	Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids. <i>Dalton Transactions</i> , 2015 , 44, 1379-87	4.3	82
316	Dissolution of metal oxides in an acid-saturated ionic liquid solution and investigation of the back-extraction behaviour to the aqueous phase. <i>Hydrometallurgy</i> , 2014 , 144-145, 27-33	4	61
315	Carbene formation upon reactive dissolution of metal oxides in imidazolium ionic liquids. <i>Dalton Transactions</i> , 2014 , 43, 3443-52	4.3	25
314	Selective uptake of rare earths from aqueous solutions by EDTA-functionalized magnetic and nonmagnetic nanoparticles. <i>ACS Applied Materials & Damp; Interfaces</i> , 2014 , 6, 4980-8	9.5	127

313	Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase. <i>Dalton Transactions</i> , 2014 , 43, 3186-95	4.3	64
312	Adsorption and chromatographic separation of rare earths with EDTA- and DTPA-functionalized chitosan biopolymers. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1530-1540	13	145
311	Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. <i>Green Chemistry</i> , 2014 , 16, 1594-1606	10	161
310	Base stable quaternary ammonium ionic liquids. <i>RSC Advances</i> , 2014 , 4, 4472-4477	3.7	25
309	Electrical conductivity and glass formation in nitrile-functionalized pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids: chain length and odd-even effects of the alkyl spacer between the pyrrolidinium ring and the nitrile group. <i>Physical Chemistry Chemical Physics</i> ,	3.6	13
308	2014 , 16, 10548-57 Homogeneous liquid-liquid extraction of neodymium(III) by choline hexafluoroacetylacetonate in the ionic liquid choline bis(trifluoromethylsulfonyl)imide. <i>Dalton Transactions</i> , 2014 , 43, 11566-78	4.3	62
307	Liquid-liquid extraction of europium(III) and other trivalent rare-earth ions using a non-fluorinated functionalized ionic liquid. <i>Dalton Transactions</i> , 2014 , 43, 1862-72	4.3	92
306	Determination of halide impurities in ionic liquids by total reflection X-ray fluorescence spectrometry. <i>Analytical Chemistry</i> , 2014 , 86, 3931-8	7.8	42
305	Electrodeposition of Lithium from Lithium-Containing Solvate Ionic Liquids. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 20152-20162	3.8	25
304	Separation of rare earths and nickel by solvent extraction with two mutually immiscible ionic liquids. <i>RSC Advances</i> , 2014 , 4, 5753	3.7	54
303	Selective extraction of metals using ionic liquids for nickel metal hydride battery recycling. <i>Green Chemistry</i> , 2014 , 16, 4595-4603	10	90
302	Electrodeposition of thick palladium coatings from a palladium(II)-containing ionic liquid. <i>Chemical Communications</i> , 2014 , 50, 10248-50	5.8	22
301	High current density electrodeposition of silver from silver-containing liquid metal salts with pyridine-N-oxide ligands. <i>Dalton Transactions</i> , 2014 , 43, 1589-98	4.3	25
300	Luminescent terbium-containing metal-organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. <i>Chemical Communications</i> , 2014 , 50, 12545-7	5.8	102
299	Enantioselective Assembly of a Ruthenium(II) Polypyridyl Complex into a Double Helix. <i>Angewandte Chemie</i> , 2014 , 126, 9105-9108	3.6	3
298	Adsorption performance of functionalized chitosanBilica hybrid materials toward rare earths. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19415-19426	13	135
297	Tin-free catalysts for the production of aliphatic thermoplastic polyurethanes. <i>Green Chemistry</i> , 2014 , 16, 4401-4407	10	16
296	Solvent extraction of europium(III) to a fluorine-free ionic liquid phase with a diglycolamic acid extractant. <i>RSC Advances</i> , 2014 , 4, 11899-11906	3.7	36

295	Homoleptic and heteroleptic N-alkylimidazole zinc(ii)-containing ionic liquids for high current density electrodeposition. <i>Dalton Transactions</i> , 2014 , 43, 12329-41	4.3	25
294	Electrodeposition of antimony from chloride-free ethylene glycol solutions and fabrication of thermoelectric Bi2Te3/(Bi1\square\text{Bi2Te3} multilayers using pulsed potential electrodeposition. <i>Electrochimica Acta</i> , 2014 , 147, 451-459	6.7	12
293	Enantioselective assembly of a ruthenium(II) polypyridyl complex into a double helix. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8959-62	16.4	11
292	Acid-Stable Magnetic CoreBhell Nanoparticles for the Separation of Rare Earths. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 15222-15229	3.9	46
291	Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs). <i>Journal of Physical Chemistry B</i> , 2014 , 118, 7440-9	3.4	37
29 0	Perspectives for the recovery of rare earths from end-of-life fluorescent lamps. <i>Journal of Rare Earths</i> , 2014 , 32, 195-200	3.7	126
289	Solvent Extraction of Neodymium(III) by Functionalized Ionic Liquid Trioctylmethylammonium Dioctyl Diglycolamate in Fluorine-free Ionic Liquid Diluent. <i>Industrial & Diocephano Chemistry Research</i> , 2014 , 53, 6500-6508	3.9	99
288	A Hybrid Supercapacitor based on Porous Carbon and the Metal-Organic Framework MIL-100(Fe). <i>ChemElectroChem</i> , 2014 , 1, 1182-1188	4.3	103
287	Determination of halide ions in solution by Total Reflection X-ray Fluorescence (TXRF) spectrometry. <i>Analytical Chemistry</i> , 2014 , 86, 1391-4	7.8	19
286	Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids. <i>Beilstein Journal of Organic Chemistry</i> , 2014 , 10, 2484-500	2.5	100
285	On the Electrochemical Deposition of Metal-Organic Frameworks. ECS Transactions, 2014, 61, 25-40	1	9
284	Decarboxylation of a Wide Range of Amino Acids with Electrogenerated Hypobromite. <i>European Journal of Organic Chemistry</i> , 2014 , 2014, 6649-6652	3.2	20
283	From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid. <i>RSC Advances</i> , 2014 , 4, 64099-64111	3.7	112
282	End-of-life treatment of poly(vinyl chloride) and chlorinated polyethylene by dehydrochlorination in ionic liquids. <i>ChemSusChem</i> , 2014 , 7, 610-7	8.3	32
281	The Sustainable Inorganic Materials Management (SIM2) Consortium at KU Leuven 2013 , 323-331		1
280	Liquid-liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 16533-41	3.6	88
279	Highly active gauze-supported skeletal nickel catalysts. <i>Chemical Communications</i> , 2013 , 49, 8498-500	5.8	10
278	Homogeneous Liquid-Liquid Extraction of Metal Ions with a Functionalized Ionic Liquid. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1659-63	6.4	168

277	How safe are protic ionic liquids? Explosion of pyrrolidinium nitrate. <i>Green Chemistry</i> , 2013 , 15, 3484	10	28
276	Electrodeposition of copperdinc alloys from an ionic liquid-like choline acetate electrolyte. <i>Electrochimica Acta</i> , 2013 , 108, 788-794	6.7	42
275	Room-temperature silver-containing liquid metal salts with nitrate anions. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 18934-43	3.6	23
274	A continuous ionic liquid extraction process for the separation of cobalt from nickel. <i>Green Chemistry</i> , 2013 , 15, 3160	10	92
273	A convenient two-step synthesis of dialkylphosphate ionic liquids. <i>Tetrahedron</i> , 2013 , 69, 9947-9950	2.4	4
272	Electrochemical dicarboxylation of conjugated fatty acids as an efficient valorization of carbon dioxide. <i>RSC Advances</i> , 2013 , 3, 4634	3.7	22
271	Electrodeposition of Bismuth Telluride Thermoelectric Films from Chloride-Free Ethylene Glycol Solutions. <i>Journal of the Electrochemical Society</i> , 2013 , 160, D196-D201	3.9	18
270	Recycling of rare earths: a critical review. <i>Journal of Cleaner Production</i> , 2013 , 51, 1-22	10.3	1360
269	Lanthanidomesogens. Fundamental Theories of Physics, 2013, 43, 1-158	0.8	8
268	Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. <i>Green Chemistry</i> , 2013 , 15, 919	10	264
267	Ionic Liquids Based on the 7-Azabicyclo[2.2.1]heptane Skeleton: Synthesis and Properties. <i>European Journal of Organic Chemistry</i> , 2013 , 2013, 3741-3750	3.2	3
266	High pressure, high temperature electrochemical synthesis of metalBrganic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5827	13	121
265	Separation of cobalt and nickel by solvent extraction with two mutually immiscible ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 9663-9	3.6	49
264	Adiabatic scanning calorimetry study of ionic liquid crystals with highly ordered crystal smectic phases. <i>Liquid Crystals</i> , 2013 , 40, 329-338	2.3	5
263	Silver-Containing Ionic Liquids with Alkylamine Ligands. <i>ChemPlusChem</i> , 2013 , 78, 578-588	2.8	27
262	Rare-Earth Economics: The Balance Problem. <i>Jom</i> , 2013 , 65, 846-848	2.1	97
261	Electrodeposition of germanium from the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 4955-64	3.6	33
260	Separation of carbon dioxide from nitrogen or methane by supported ionic liquid membranes (SILMs): influence of the cation charge of the ionic liquid. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 15	513 ³ 1⁴40	51

(2012-2013)

259	Synthesis and properties of alkoxy- and alkenyl-substituted peralkylated imidazolium ionic liquids. <i>ChemPhysChem</i> , 2013 , 14, 3503-16	3.2	3	
258	Homogeneous liquid-liquid extraction of rare earths with the betaine-betainium bis(trifluoromethylsulfonyl)imide ionic liquid system. <i>International Journal of Molecular Sciences</i> , 2013 , 14, 21353-77	6.3	72	
257	Bis(ethyl-eneglycolato-(2) O,O')tellurium(IV). Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1080			
256	Redox reference systems in ionic liquids. <i>Electrochimica Acta</i> , 2012 , 76, 242-248	6.7	24	
255	A self-assembled complex with a titanium(IV) catecholate core as a potential bimodal contrast agent. <i>Chemistry - A European Journal</i> , 2012 , 18, 293-302	4.8	38	
254	Crystal structures of low-melting ionic transition-metal complexes with N-alkylimidazole ligands. <i>CrystEngComm</i> , 2012 , 14, 4902	3.3	34	
253	Heteroleptic silver-containing ionic liquids. <i>Dalton Transactions</i> , 2012 , 41, 6902-5	4.3	33	
252	Quinolinium and isoquinolinium ionic liquid crystals. <i>RSC Advances</i> , 2012 , 2, 8061	3.7	41	
251	Phenolate platform for anion exchange in ionic liquids. <i>RSC Advances</i> , 2012 , 2, 11936	3.7	17	
250	Nematogenic tetracatenar lanthanidomesogens. <i>Dalton Transactions</i> , 2012 , 41, 13271-3	4.3	8	
249	Stability of sputter-deposited gold nanoparticles in imidazolium ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 5662-71	3.6	56	
248	An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. <i>Green Chemistry</i> , 2012 , 14, 1657	10	171	
247	High current density electrodeposition from silver complex ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 1706-15	3.6	46	
246	Electrodeposition of luminescent composite metal coatings containing rare-earth phosphor particles. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5514		27	
245	Production of ionic liquids by electrodialysis. Separation and Purification Technology, 2012, 97, 90-95	8.3	26	
244	Speciation of copper(II) complexes in an ionic liquid based on choline chloride and in choline chloride/water mixtures. <i>Inorganic Chemistry</i> , 2012 , 51, 4972-81	5.1	96	
243	A new metallostar complex based on an aluminum(III) 8-hydroxyquinoline core as a potential bimodal contrast agent. <i>Dalton Transactions</i> , 2012 , 41, 10549-56	4.3	30	
242	Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 13624-9	3.6	15	

241	Tetranuclear d-f metallostars: synthesis, relaxometric, and luminescent properties. <i>Inorganic Chemistry</i> , 2012 , 51, 8775-83	5.1	40
240	Synthesis of glucose esters from cellulose in ionic liquids. <i>Holzforschung</i> , 2012 , 66,	2	8
239	Continuous synthesis of peralkylated imidazoles and their transformation into ionic liquids with improved (electro)chemical stabilities. <i>ChemPhysChem</i> , 2012 , 13, 3146-57	3.2	26
238	Direct-on-barrier copper electroplating on ruthenium from the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide. <i>Journal of Materials Science: Materials in Electronics</i> , 2012 , 23, 945-951	2.1	14
237	Oscillating electrochemical reaction in copper-containing imidazolium ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 15448-54	3.6	10
236	Thermochromic properties of low-melting ionic uranyl isothiocyanate complexes. <i>Chemical Communications</i> , 2011 , 47, 4490-2	5.8	47
235	A heterobimetallic ruthenium-gadolinium complex as a potential agent for bimodal imaging. <i>Inorganic Chemistry</i> , 2011 , 50, 10005-14	5.1	44
234	Growth of sputter-deposited gold nanoparticles in ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 13565-71	3.6	61
233	Nitrile-functionalized pyridinium, pyrrolidinium, and piperidinium ionic liquids. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 8424-38	3.4	52
232	CR3: Cornerstone to the sustainable inorganic materials management (SIM2) research program at K.U.Leuven. <i>Jom</i> , 2011 , 63, 14-15	2.1	15
231	A Modular Approach towards the Synthesis of Target-Specific MRI Contrast Agents. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 3577-3585	2.3	16
230	T-shaped ionic liquid crystals based on the imidazolium motif: exploring substitution of the C-2 imidazolium carbon atom. <i>Chemistry - A European Journal</i> , 2011 , 17, 4291-306	4.8	32
229	Copper(I)-containing ionic liquids for high-rate electrodeposition. <i>Chemistry - A European Journal</i> , 2011 , 17, 5054-9	4.8	93
228	1,10-Phenanthrolinium ionic liquid crystals. <i>Langmuir</i> , 2011 , 27, 2036-43	4	35
227	Accommodation of the Rare Earths in the Periodic Table: A Historical Analysis. <i>Fundamental Theories of Physics</i> , 2011 , 41, 1-93	0.8	9
226	Electrodeposition from Cationic Cuprous Organic Complexes: Ionic Liquids for High Current Density Electroplating. <i>Journal of the Electrochemical Society</i> , 2011 , 158, D21	3.9	34
225	Electrodeposition from a Liquid Cationic Cuprous Organic Complex for Seed Layer Deposition. Journal of the Electrochemical Society, 2011 , 158, D647	3.9	9
224	Modeling of Aluminium Deposition from Chloroaluminate Ionic Liquids. <i>Journal of the Electrochemical Society</i> , 2011 , 158, D634	3.9	21

(2009-2010)

223	Symmetry and electronic states of Mn2+ in ZnS nanowires with mixed hexagonal and cubic stacking. <i>Applied Physics Letters</i> , 2010 , 97, 041918	3.4	5
222	Influence of the anion on the electrical conductivity and glass formation of 1-butyl-3-methylimidazolium ionic liquids. <i>Journal of Chemical Physics</i> , 2010 , 133, 034503	3.9	60
221	Europium(III)-doped liquid-crystalline physical gels. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8571		23
220	Uranyl complexes of carboxyl-functionalized ionic liquids. <i>Inorganic Chemistry</i> , 2010 , 49, 3351-60	5.1	82
219	Physical Properties of Metallomesogens 2010 , 61-141		8
218	Hydrophobic ionic liquids with strongly coordinating anions. <i>Chemical Communications</i> , 2010 , 46, 234-6	5.8	133
217	Ionic liquid as plasticizer for europium(III)-doped luminescent poly(methyl methacrylate) films. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 1879-85	3.6	135
216	Immobilization of molecular catalysts in supported ionic liquid phases. <i>Dalton Transactions</i> , 2010 , 39, 8377-90	4.3	209
215	Spontaneous product segregation from reactions in ionic liquids: application in Pd-catalyzed aliphatic alcohol oxidation. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 1741-9	3.6	27
214	Product recovery from ionic liquids by solvent-resistant nanofiltration: application to ozonation of acetals and methyl oleate. <i>Green Chemistry</i> , 2010 , 12, 1726	10	19
213	Cellulose conversion into alkylglycosides in the ionic liquid 1-butyl-3-methylimidazolium chloride. <i>Green Chemistry</i> , 2010 , 12, 1790	10	44
212	Reductive splitting of cellulose in the ionic liquid 1-butyl-3-methylimidazolium chloride. <i>ChemSusChem</i> , 2010 , 3, 91-6	8.3	55
211	Synthesis, Structure, and Spectroscopic Properties of the New Lanthanum(III) Fluoride Oxomolybdate(VI) La3FMo4O16. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 1626-1632	2.3	10
210	Cobalt(II) complexes of nitrile-functionalized ionic liquids. <i>Chemistry - A European Journal</i> , 2010 , 16, 184	9458	54
209	Hydrogen bonding versus van der Waals interactions: competitive influence of noncovalent interactions on 2D self-assembly at the liquid-solid interface. <i>Chemistry - A European Journal</i> , 2010 , 16, 14447-58	4.8	75
208	Direct Cu-on-Ta Electroplating from Ionic Liquids in High Vacuum. <i>ECS Transactions</i> , 2009 , 25, 119-128	1	5
207	Speciation of rare-earth metal complexes in ionic liquids: a multiple-technique approach. <i>Chemistry - A European Journal</i> , 2009 , 15, 1449-61	4.8	76
206	Pyrrolidinium ionic liquid crystals. <i>Chemistry - A European Journal</i> , 2009 , 15, 656-74	4.8	117

205	(Tetracycline)europium(III) Complex as Luminescent Probe for Hydrogen Peroxide Detection. Helvetica Chimica Acta, 2009 , 92, 2387-2397	2	10
204	Ceric ammonium nitrate (CAN) as oxidizing or nitrating reagent for organic reactions in ionic liquids. <i>Tetrahedron Letters</i> , 2009 , 50, 4582-4586	2	26
203	Lanthanide(III) complexes of pyridine-N-oxide analogues of DOTA in solution and in the solid state. A new kind of isomerism in complexes of DOTA-like ligands. <i>Inorganic Chemistry</i> , 2009 , 48, 466-75	5.1	39
202	Pyrrolidinium ionic liquid crystals with pendant mesogenic groups. <i>Langmuir</i> , 2009 , 25, 5881-97	4	61
201	3,5-Dianilino Substituted Difluoroboron Dipyrromethene: Synthesis, Spectroscopy, Photophysics, Crystal Structure, Electrochemistry, and Quantum-Chemical Calculations <i>Journal of Physical Chemistry C</i> , 2009 , 113, 11731-11740	3.8	58
2 00	Thermotropic ruthenium(II)-containing metallomesogens based on substituted 1,10-phenanthroline ligands. <i>Inorganic Chemistry</i> , 2009 , 48, 2490-9	5.1	38
199	Lanthanide-based luminescent hybrid materials. <i>Chemical Reviews</i> , 2009 , 109, 4283-374	68.1	2680
198	Piperidinium, piperazinium and morpholinium ionic liquid crystals. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 9506-11	3.4	92
197	Luminescence of metallomesogens in the liquid crystal state. <i>Journal of Materials Chemistry</i> , 2009 , 19, 448-453		135
196	Polarized luminescence of non-mesogenic europium(III) complexes doped into a nematic liquid crystal. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 10575-9	3.4	21
195	Electrochemical decomposition of choline chloride based ionic liquid analogues. <i>Green Chemistry</i> , 2009 , 11, 1357	10	131
194	Oxidation of cyclic acetals by ozone in ionic liquid media. <i>Chemical Communications</i> , 2009 , 6439-41	5.8	13
193	Synthesis, spectroscopy, crystal structure, electrochemistry, and quantum chemical and molecular dynamics calculations of a 3-anilino difluoroboron dipyrromethene dye. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 439-47	2.8	94
192	Temperature-driven mixing-demixing behavior of binary mixtures of the ionic liquid choline bis(trifluoromethylsulfonyl)imide and water. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 1429-37	3.4	89
191	Visible and near-infrared emission by samarium(III)-containing ionic liquid mixtures. <i>Inorganic Chemistry</i> , 2009 , 48, 3018-26	5.1	114
190	Luminescence of LaF3:Ln3+ Nanocrystal Dispersions in Ionic Liquids. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 13532-13538	3.8	41
189	Lanthanide-doped luminescent ionogels. <i>Dalton Transactions</i> , 2009 , 298-306	4.3	130
188	Polynuclear Metal Complexes Obtained from the Task-Specific Ionic Liquid Betainium Bistriflimide. <i>Crystal Growth and Design</i> , 2008 , 8, 1353-1363	3.5	83

(2007-2008)

187	Imidazo[4,5-f]-1,10-phenanthrolines: Versatile Ligands for the Design of Metallomesogens. <i>Chemistry of Materials</i> , 2008 , 20, 1278-1291	9.6	82
186	Rigid tetracatenar liquid crystals derived from 1,10-phenanthroline. <i>Soft Matter</i> , 2008 , 4, 2172	3.6	32
185	Copper(II) 15-metallacrown-5 lanthanide(III) complexes derived from l-serine and l-threonine hydroxamic acids. <i>Journal of Alloys and Compounds</i> , 2008 , 451, 38-41	5.7	8
184	LanthanideBurfactant-combined catalysts for the allylation of benzaldehyde with tetraallyltin in aqueous solutions. <i>Journal of Alloys and Compounds</i> , 2008 , 451, 418-421	5.7	14
183	Carboxyl-functionalized task-specific ionic liquids for solubilizing metal oxides. <i>Inorganic Chemistry</i> , 2008 , 47, 9987-99	5.1	207
182	YF[MoO4] and YCl[MoO4]: two halide derivatives of yttrium ortho-oxomolybdate: syntheses, structures, and luminescence properties. <i>Inorganic Chemistry</i> , 2008 , 47, 3728-35	5.1	25
181	Pressure-induced phase transitions on a liquid crystalline europium(III) complex. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 5291-5	3.4	5
180	Imidazolium Ionic Liquid Crystals with Pendant Mesogenic Groups. <i>Chemistry of Materials</i> , 2008 , 20, 157	7-1)668	138
179	Listening to lanthanide complexes: determination of the intrinsic luminescence quantum yield by nonradiative relaxation. <i>ChemPhysChem</i> , 2008 , 9, 600-6	3.2	33
178	Catalytic hydrogenolysis of aromatic ketones in mixed choline-betainium ionic liquids. <i>ChemSusChem</i> , 2008 , 1, 997-1005	8.3	30
177	Liquid-Crystalline Ternary Rare-Earth Complexes. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 756-761	2.3	34
176	Polarized Luminescence from Aligned Samples of Nematogenic Lanthanide Complexes. <i>Advanced Materials</i> , 2008 , 20, 252-257	24	119
175	Synthesis of a neodymium-quinolate complex for near-infrared electroluminescence applications. <i>Thin Solid Films</i> , 2008 , 516, 5098-5102	2.2	30
174	Crystal structure and ab initio calculations of a cyano-carbamimidic acid ethyl ester. <i>Journal of Molecular Structure</i> , 2008 , 885, 97-103	3.4	2
173	Temperature dependence of the electrical conductivity of imidazolium ionic liquids. <i>Journal of Chemical Physics</i> , 2008 , 128, 064509	3.9	150
172	Tris(1-ethyl-3-methyl-imidazolium) hexa-bromidoeuropate(III). <i>Acta Crystallographica Section E:</i> Structure Reports Online, 2008 , 64, m945		7
171	Gadolinium(III) complexes of mono- and diethyl esters of monophosphonic acid analogue of DOTA as potential MRI contrast agents: solution structures and relaxometric studies. <i>Dalton Transactions</i> , 2007 , 493-501	4.3	68
170	Speciation of uranyl complexes in ionic liquids by optical spectroscopy. <i>Inorganic Chemistry</i> , 2007 , 46, 11335-44	5.1	98

169	Magnetic alignment study of rare-earth-containing liquid crystals. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 13881-5	3.4	42
168	Lanthanides and actinides in ionic liquids. <i>Chemical Reviews</i> , 2007 , 107, 2592-614	68.1	553
167	Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions. <i>Journal of Organic Chemistry</i> , 2007 , 72, 517-24	4.2	79
166	Rare-Earth Nitroquinolinates: Visible-Light-Sensitizable Near-Infrared Emitters in Aqueous Solution. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 302-305	2.3	29
165	Bis(phenylethylamide) Derivatives of Gd-DTPA as Potential Receptor-Specific MRI Contrast Agents. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 2061-2067	2.3	23
164	Speciation of Uranyl Nitrato Complexes in Acetonitrile and in the Ionic Liquid 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. <i>European Journal of Inorganic</i> <i>Chemistry</i> , 2007 , 2007, 5120-5126	2.3	54
163	Lanthanide(III) nitrobenzenesulfonates and p-toluenesulfonate complexes of lanthanide(III), iron(III), and copper(II) as novel catalysts for the formation of calix[4]resorcinarene. <i>Tetrahedron</i> , 2007 , 63, 9063-9070	2.4	10
162	Organo-lanthanide complexes as luminescent dopants in polymer waveguides fabricated by hot embossing. <i>Optical Materials</i> , 2007 , 29, 1798-1808	3.3	30
161	Optical properties of planar polymer waveguides doped with organo-lanthanide complexes. <i>Optical Materials</i> , 2007 , 29, 1821-1830	3.3	26
160	Near-infrared photoluminescence of lanthanide complexes containing the hemicyanine chromophore. <i>Polyhedron</i> , 2007 , 26, 5441-5447	2.7	12
159	Near-infrared luminescence emitted by an electrically switched liquid crystal cell. <i>Journal of Luminescence</i> , 2007 , 127, 611-615	3.8	21
158	Bis{2-[(2-hydroxyethyl)iminomethyl]phenolato}gold(III) tetrachloroaurate(III). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 63, m402-m404		1
157	Di-Ethloro-bis({2-[(2-hydroxyethyl)iminomethyl]phenolato-BN,O,O?}nickel(II)) methanol solvate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 63, m569-m571		3
156	Dichloridobis(picolinohydrazide)cadmium(II). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 63, m3187-m3187		1
155	Influence of the Anion on the Electrodeposition of Cobalt from Imidazolium Ionic Liquids. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, D104		42
154	Choline saccharinate and choline acesulfamate: ionic liquids with low toxicities. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 5254-63	3.4	204
153	Rare-Earth complexes of ferrocene-containing ligands: visible-light excitable luminescent materials. <i>Inorganic Chemistry</i> , 2007 , 46, 5302-9	5.1	78
152	Paramagnetic liposomes containing amphiphilic bisamide derivatives of Gd-DTPA with aromatic side chain groups as possible contrast agents for magnetic resonance imaging. <i>European Biophysics Journal</i> , 2006 , 35, 136-44	1.9	28

Ionic Liquid Crystals. ChemInform, 2006, 37, no 151 1 Dinuclear Lanthanide Schiff-Base Complexes Forming a Rectangular Columnar Mesophase. 150 2.3 39 European Journal of Inorganic Chemistry, 2006, 2006, 150-157 Mandelohydroxamic Acid as Ligand for Copper(II) 15-Metallacrown-5 Lanthanide(III) and Copper(II) 149 2.3 21 15-Metallacrown-5 Uranyl Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 1466-1474 Study of Thermodynamic and Kinetic Stability of Transition Metal and Lanthanide Complexes of DTPA Analogues with a Phosphorus Acid Pendant Arm. European Journal of Inorganic Chemistry, 148 2.3 30 2006, 2006, 1976-1986 Pharmacokinetic and in vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent 147 3.2 37 with high relaxivity. Contrast Media and Molecular Imaging, 2006, 1, 267-78 Luminescent Ionogels Based on Europium-Doped Ionic Liquids Confined within Silica-Derived 9.6 146 218 Networks. *Chemistry of Materials*, **2006**, 18, 5711-5715 Anionic rare-earth thiocyanate complexes as building blocks for low-melting metal-containing ionic 16.4 167 145 liquids. Journal of the American Chemical Society, 2006, 128, 13658-9 Visible-light-sensitized near-infrared luminescence from rare-earth complexes of the 48 5.1 144 9-hydroxyphenalen-1-one ligand. Inorganic Chemistry, 2006, 45, 10416-8 Task-specific ionic liquid for solubilizing metal oxides. Journal of Physical Chemistry B, 2006, 110, 20978-924 143 357 Lanthanide-Containing Metallomesogens with Low Transition Temperatures. Chemistry of Materials 9.6 142 55 , 2006, 18, 3698-3704 Two-dimensional self-assembly and phase behavior of an alkoxylated sandwich-type bisphthalocyanine and its phthalocyanine analogues at the liquid-solid interface. Langmuir, 2006, 141 4 38 22.723-8 Chapter 229 Applications of tetravalent cerium compounds. Fundamental Theories of Physics, 2006, 0.8 140 21 36, 281-392 Strong luminescence of rare earth compounds in ionic liquids: Luminescent properties of lanthanide(III) iodides in the ionic liquid 1-dodecyl-3-methylimidazolium 139 5.7 59 bis(trifluoromethanesulfonyl)imide. Journal of Alloys and Compounds, 2006, 418, 204-208 Luminescent europium(III) and terbium(III) nicotinate complexes covalently linked to a 138 3.8 37 1,10-phenanthroline functionalised solgel glass. Journal of Luminescence, 2006, 117, 163-169 Relaxometric study of copper [15]metallacrown-5 gadolinium complexes derived from 4.8 38 137 alpha-aminohydroxamic acids. Chemistry - A European Journal, 2005, 12, 204-10 Cyclam (1,4,8,11-tetraazacyclotetradecane) with one methylphosphonate pendant arm: a new 136 40 4.3 ligand for selective copper(ii) binding. Dalton Transactions, 2005, 2908-15 Ionic liquid crystals. Chemical Reviews, 2005, 105, 4148-204 68.1 135 996 A propeller-like uranyl metallomesogen. Journal of the American Chemical Society, 2005, 127, 17602-3 134 50

133	Covalent Coupling of Luminescent Tris(2-thenoyltrifluoroacetonato)lanthanide(III) Complexes on a Merrifield Resin. <i>Chemistry of Materials</i> , 2005 , 17, 2148-2154	9.6	182
132	Design of High Coordination Number Metallomesogens by Decoupling of the Complex-Forming and Mesogenic Groups: Nematic and Lamello-Columnar Mesophases. <i>Chemistry of Materials</i> , 2005 , 17, 6589-6598	9.6	108
131	Spectroscopic properties of neodymium(III)-containing polyoxometalates in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005 , 62, 478-82	4.4	11
130	Study of the luminescence of tris(2-thenoyltrifluoroacetonato)lanthanide(III) complexes covalently linked to 1,10-phenanthroline-functionalized hybrid solgel glasses. <i>Journal of Luminescence</i> , 2005 , 114, 77-84	3.8	52
129	Narrow bandwidth red electroluminescence from solution-processed lanthanide-doped polymer thin films. <i>Thin Solid Films</i> , 2005 , 491, 264-269	2.2	47
128	Intense near-infrared luminescence of anhydrous lanthanide(III) iodides in an imidazolium ionic liquid. <i>Chemical Physics Letters</i> , 2005 , 402, 75-79	2.5	111
127	Purification of imidazolium ionic liquids for spectroscopic applications. <i>Chemical Physics Letters</i> , 2005 , 415, 131-136	2.5	224
126	Rare-earth beta-diketonates. Fundamental Theories of Physics, 2005 , 35, 107-272	0.8	216
125	Thin Films of Highly Luminescent Lanthanide Complexes Covalently Linked to an OrganicIhorganic Hybrid Material via 2-Substituted Imidazo[4,5-f]-1,10-phenanthroline Groups. <i>Chemistry of Materials</i> , 2005 , 17, 5194-5201	9.6	202
124	Photostability of a highly luminescent europium beta-diketonate complex in imidazolium ionic liquids. <i>Chemical Communications</i> , 2005 , 4354-6	5.8	177
123	Visible light sensitisation of europium(III) luminescence in a 9-hydroxyphenal-1-one complex. <i>Chemical Communications</i> , 2005 , 590-2	5.8	66
122	Alkali-Metal Salts of Aromatic Carboxylic Acids: Liquid Crystals without Flexible Chains. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 563-571	2.3	30
121	Mixed f-d Metallomesogens with an Extended Rigid Core. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 1506-1513	2.3	24
120	Lanthanide(III)-Induced Conversion of 12-Metallacrown-4 to 5-Metallacrown-5 Complexes in Solution. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 3303-3310	2.3	29
119	Lanthanide(III) Tosylates as New Acylation Catalysts. <i>European Journal of Organic Chemistry</i> , 2005 , 2005, 1810-1815	3.2	19
118	Synthesis, characterization, and pharmacokinetic evaluation of a potential MRI contrast agent containing two paramagnetic centers with albumin binding affinity. <i>Chemistry - A European Journal</i> , 2005 , 11, 3077-86	4.8	45
117	Pentacopper(II) complexes of alpha-aminohydroxamic acids: uranyl-induced conversion of a 12-metallacrown-4 to a 15-metallacrown-5. <i>Journal of Inorganic Biochemistry</i> , 2005 , 99, 497-504	4.2	21
116	A luminescent tris(2-thenoyltrifluoroacetonato)europium(III) complex covalently linked to a 1,10-phenanthroline-functionalised solgel glass. <i>Journal of Materials Chemistry</i> , 2004 , 14, 191-195		311

115	Gadolinium DTPA-Monoamide Complexes Incorporated into Mixed Micelles as Possible MRI Contrast Agents. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 3538-3543	2.3	55	
114	Lanthanide(III) Nitrobenzenesulfonates as New Nitration Catalysts: The Role of the Metal and of the Counterion in the Catalytic Efficiency. <i>European Journal of Organic Chemistry</i> , 2004 , 2004, 4560-456	56 ^{3.2}	13	
113	Lanthanide(III) nosylates as new nitration catalysts. <i>Tetrahedron Letters</i> , 2004 , 45, 3137-3139	2	47	
112	Ionic liquids as solvents for near-infrared emitting lanthanide complexes. <i>Chemical Physics Letters</i> , 2004 , 395, 306-310	2.5	80	
111	Strong erbium luminescence in the near-infrared telecommunication window. <i>Chemical Physics Letters</i> , 2004 , 397, 447-450	2.5	63	
110	Spectroscopic properties of uranyl crown ether complexes in non-aqueous solvents. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 2946-2950	3.6	15	
109	Spectroscopic properties of uranyl chloride complexes in non-aqueous solvents. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 3292-3298	3.6	47	
108	Structure and Mesomorphism of Silver Alkanoates. <i>Chemistry of Materials</i> , 2004 , 16, 2021-2027	9.6	73	
107	Temperature-driven luminescence switching of europium(III) in a glass dispersed liquid crystal film. <i>Liquid Crystals</i> , 2004 , 31, 601-605	2.3	23	
106	Lanthanide(III) complexes of aromatic sulfonic acids as catalysts for the nitration of toluene. <i>Journal of Alloys and Compounds</i> , 2004 , 374, 46-49	5.7	20	
105	Heterobimetallic gadolinium(III)Iron(III) complex of DTPA-bis(3-hydroxytyramide). <i>Journal of Alloys and Compounds</i> , 2004 , 374, 325-329	5.7	14	
104	Near-Infrared Luminescence of Lanthanide Calcein and Lanthanide Dipicolinate Complexes Doped into a Silica B EG Hybrid Material. <i>Chemistry of Materials</i> , 2004 , 16, 1531-1535	9.6	108	
103	Rare-earth quinolinates: infrared-emitting molecular materials with a rich structural chemistry. <i>Inorganic Chemistry</i> , 2004 , 43, 8461-9	5.1	113	
102	Mesophase behaviour and thermal stability of octa-alkoxy substituted phthalocyaninatocobalt (II) complexes. <i>Liquid Crystals</i> , 2003 , 30, 143-148	2.3	5	
101	Influence of the ligand structure on the liquid crystalline properties of lanthanide-containing salicylaldimine mesogens. <i>Liquid Crystals</i> , 2003 , 30, 479-486	2.3	8	
100	Judd D felt analysis of lanthanide doped silica B EG hybrid sol g els. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 198-202	3.6	22	
99	Lanthanide Liquid Crystalline Complexes with Perfluoroalkylsulfate Anion. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2003 , 29, 357-361	1.6	2	
98	Potential MRI Contrast Agents Based on Micellar Incorporation of Amphiphilic Bis(alkylamide) Derivatives of [(GdDTPA)(H2O)]2[[European Journal of Inorganic Chemistry, 2003, 2003, 3021-3027	2.3	66	

97	Adducts of Schiff Bases with Tris(Hiketonato)lanthanide(III) Complexes: Structure and Liquid-Crystalline Behaviour. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 3028-3033	2.3	21
96	Crystal Structures and Thermal Behaviour of Lanthanide(III) Hexanoate 1, 10-Phenanthroline Complexes, [M(C5H11CO2)3(phen)] and [Tm(C5H11CO2)2(NO3)(phen)]. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2003 , 629, 975-980	1.3	7
95	Influence of the Chain Length on the Thermal Behavior of Lanthanide(III) 4-Alkoxybenzoates. <i>Chemistry of Materials</i> , 2003 , 15, 212-217	9.6	17
94	Structure and Mesomorphic Behavior of Alkoxy-Substituted Bis(phthalocyaninato)lanthanide(III) Complexes. <i>Chemistry of Materials</i> , 2003 , 15, 3930-3938	9.6	75
93	Halogen substitution as an efficient tool to increase the near-infrared photoluminescence intensity of erbium(III) quinolinates in non-deuterated DMSO. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 2754-	-2 3 757	54
92	Near-infrared photoluminescence of lanthanide-doped liquid crystals. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1520-1522		99
91	Liquid-crystalline azines formed by the rare-earth promoted decomposition of hydrazide Babbell ligands: structural and thermal properties. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1639-1645		31
90	Trimetallic Nickellanthanum and Nickelladolinium Metallomesogens. <i>Supramolecular Chemistry</i> , 2003 , 15, 485-494	1.8	18
89	Liquid-crystalline metallophthalocyanines containing late first-row transition metals. <i>Arkivoc</i> , 2003 , 2003, 68-82	0.9	11
88	Mixed copper-lanthanide metallomesogens. <i>Chemistry - A European Journal</i> , 2002 , 8, 1101-5	4.8	61
87	Room-temperature magnetic anisotropy of lanthanide complexes: A model study for various coordination polyhedra. <i>Journal of Chemical Physics</i> , 2002 , 116, 4673-4685	3.9	88
86	Mesomorphism of lanthanide-containing Schiff's base complexes with chloride counterions. <i>Liquid Crystals</i> , 2002 , 29, 1209-1216	2.3	17
85	Narrow band photoluminescence of europium-doped liquid crystals. <i>Journal of Materials Chemistry</i> , 2002 , 12, 3374-3376		67
84	Influence of heat treatment on the intensities of ffltransitions in lanthanide-doped solgel glasses. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 552-555	3.6	22
83	Lanthanide-containing liquid crystals and surfactants. Chemical Reviews, 2002, 102, 2303-46	68.1	461
82	Thermal and optical behaviour of octa-alkoxy substituted phthalocyaninatovanadyl complexes. <i>Liquid Crystals</i> , 2002 , 29, 1425-1433	2.3	19
81	Luminescent lanthanide complexes with liquid crystalline properties. <i>Liquid Crystals</i> , 2002 , 29, 1581-15	84 .3	28
80	Nature of equilibrium shifts in racemic praseodymium(III) tris(2,2?-oxydiacetate) induced by interaction with chiral probes. <i>Dalton Transactions RSC</i> , 2002 , 1602-1606		18

(2001-2001)

79	Investigation of thermal properties of glassy itraconazole: identification of a monotropic mesophase. <i>Thermochimica Acta</i> , 2001 , 376, 175-181	2.9	95	
78	Mesomorphic behaviour of cerium(III) alkanoates. <i>Materials Science and Engineering C</i> , 2001 , 18, 199-20	48.3	19	
77	Lanthanide containing Schiff's base complexes with chloride counter-ions: mesomorphic properties. <i>Materials Science and Engineering C</i> , 2001 , 18, 211-215	8.3	17	
76	Lanthanide complexes of Schiff base ligands containing three aromatic rings: synthesis and thermal behaviour. <i>Materials Science and Engineering C</i> , 2001 , 18, 217-221	8.3	14	
75	Synthesis, spectral and mesomorphic properties of octa-alkoxy substituted phthalocyanine ligands and lanthanide complexes. <i>Materials Science and Engineering C</i> , 2001 , 18, 229-238	8.3	86	•
74	Anisotropic molecular magnetic materials based on liquid-crystalline lanthanide complexes. <i>Materials Science and Engineering C</i> , 2001 , 18, 247-254	8.3	36	
73	Spectroscopic properties of monolithic solgel glasses doped with lanthanide bipyridyl complexes. <i>Materials Science and Engineering C</i> , 2001 , 18, 255-258	8.3	17	
72	Probing the magnetic anisotropy of lanthanide-containing metallomesogens by luminescence spectroscopy. <i>ChemPhysChem</i> , 2001 , 2, 680-3	3.2	41	
71	Absolute configuration assignment of D3-symmetric lanthanide complexes based on circular dichroism induced by interaction with a chiral probe. <i>ChemPhysChem</i> , 2001 , 2, 767-9	3.2	10	
70	Coordinatively Unsaturated Metal Centers as Building Blocks for High Coordination Number Metallomesogens. <i>Angewandte Chemie</i> , 2001 , 113, 248-250	3.6	16	
69	Synthesis, mesomorphism, and unusual magnetic behaviour of lanthanide complexes with perfluorinated counterions. <i>Chemistry - A European Journal</i> , 2001 , 7, 99-105	4.8	58	
68	Coordinatively Unsaturated Metal Centers as Building Blocks for High Coordination Number Metallomesogens. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 242-244	16.4	33	
67	Influence of crystal-field perturbations on the room-temperature magnetic anisotropy of lanthanide complexes. <i>Chemical Physics Letters</i> , 2001 , 345, 132-140	2.5	35	
66	Thermal behaviour of lanthanum(III) alkanoates. <i>Liquid Crystals</i> , 2001 , 28, 1727-1733	2.3	27	
65	Lyotropic mesomorphism of rare-earth trisalkylsulphates in the water-ethylene glycol system. Liquid Crystals, 2001 , 28, 1877-1879	2.3	13	•
64	Mesomorphic Complexes of the Lanthanide Elements. <i>Molecular Crystals and Liquid Crystals</i> , 2001 , 364, 745-752		9	
63	Mesomorphism of lanthanide-containing Schiff's base complexes with dodecyl sulphate counterions. <i>Liquid Crystals</i> , 2001 , 28, 621-627	2.3	30	
62	Hyper-Rayleigh scattering in the Fourier domain for higher precision: Correcting for multiphoton fluorescence with demodulation and phase data. <i>Review of Scientific Instruments</i> , 2001 , 72, 3215-3220	1.7	54	

61	Crystal structure of lanthanum(III) butyrate monohydrate. <i>Journal of Alloys and Compounds</i> , 2001 , 323-324, 142-146	5.7	10
60	Mesomorphic behaviour of praseodymium(III) alkanoates. <i>Liquid Crystals</i> , 2001 , 28, 819-825	2.3	23
59	Rare-earth complexes of mesomorphic Schiff's base ligands. <i>Liquid Crystals</i> , 2001 , 28, 279-285	2.3	20
58	Molecular First Hyperpolarizability Data for Lanthanate Complexes Containing the Hemicyanine Chromophore. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 5169-5173	3.4	25
57	Optical properties of vitrified rare-earth soaps. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 4796-4799	3.6	17
56	Induced Mesophases in Binary Mixtures of Lanthanide(III) Dodecanoates. <i>Chemistry of Materials</i> , 2001 , 13, 2243-2246	9.6	20
55	Lanthanide(III) Dodecanoates: Structure, Thermal Behaviour, and Ion-Size Effects on the Mesomorphism. <i>European Journal of Inorganic Chemistry</i> , 2000 , 2000, 1429-1436	2.3	45
54	Rare-Earth-Containing Magnetic Liquid Crystals. <i>Journal of the American Chemical Society</i> , 2000 , 122, 4335-4344	16.4	225
53	On the magnetic anisotropy of lanthanide-containing metallomesogens. <i>Journal of Chemical Physics</i> , 2000 , 113, 10293-10303	3.9	55
52	Stilbazolium dyes containing rare-earth ions. <i>Journal of Alloys and Compounds</i> , 2000 , 303-304, 125-131	5.7	5
51	Mesomorphic lanthanide complexes with azomethine ligands. <i>Journal of Alloys and Compounds</i> , 2000 , 303-304, 146-150	5.7	19
50	Spectroscopic study of neodymium soaps in 1-pentanol. <i>Journal of Alloys and Compounds</i> , 2000 , 303-304, 387-392	5.7	7
49	Spectroscopic behaviour of lanthanide(III) coordination compounds with Schiff base ligands. <i>Physical Chemistry Chemical Physics</i> , 2000 , 2, 3753-3757	3.6	35
48	Supramolecular liquid crystals formed by hydrogen bonding between a benzocrown-bearing stilbazole and carboxylic acids. <i>Liquid Crystals</i> , 2000 , 27, 851-858	2.3	24
47	Structure and mesomorphism of neodymium(III) alkanoates. <i>Inorganic Chemistry</i> , 2000 , 39, 5938-45	5.1	57
46	On the mesomorphism of lanthanum (III) alkanoates. <i>Liquid Crystals</i> , 1999 , 26, 1717-1721	2.3	18
45	Spectroscopic properties of uranyl ions in fluorophosphate glasses. <i>Journal of Physics Condensed Matter</i> , 1999 , 11, 4283-4287	1.8	6
44	On the reported mesomorphism of lanthanide complexes containing the hemicyanine structural unit. <i>Liquid Crystals</i> , 1999 , 26, 771-774	2.3	11

43	Liquid-Crystalline Lanthanide Complexes. <i>Materials Science Forum</i> , 1999 , 315-317, 169-174	0.4	11	
42	Solvatochromism of lanthanide complexes containing the hemicyanine chromophore. <i>Journal of Molecular Liquids</i> , 1999 , 83, 283-294	6	22	
41	Influence of the lanthanide contraction on the transition temperatures of rare-earth containing metallomesogens with Schiff base ligands. <i>Chemical Physics Letters</i> , 1999 , 300, 509-514	2.5	48	
40	Visualisation of the reliability of Judd D felt intensity parameters by graphical simulation of the absorption spectrum. <i>Chemical Physics Letters</i> , 1999 , 303, 76-80	2.5	18	
39	Ionic Liquid Crystals with Hemicyanine Chromophores. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 1999 , 35, 63-73		10	
38	Synthesis and mesogenic properties of azomethine complexes of lanthanides with alkyl sulfate anions. <i>Russian Chemical Bulletin</i> , 1999 , 48, 385-387	1.7	21	
37	Spectroscopic properties of trivalent samarium ions in glasses 1999 ,		42	
36	JuddDfelt intensity parameters of trivalent lanthanide ions in a NaPO3BaF2 based fluorophosphate glass. <i>Journal of Alloys and Compounds</i> , 1999 , 283, 59-65	5.7	74	
35	Spectroscopic properties of tetravalent uranium in glasses. <i>Journal of Alloys and Compounds</i> , 1999 , 285, 105-111	5.7	10	
34	Magneto-optical properties of neodymium-doped LiYF4. <i>Journal of Alloys and Compounds</i> , 1999 , 291, 300-311	5.7	20	
33	Optical study of halide modified sulfide glasses containing neodymium ions. <i>Journal of Non-Crystalline Solids</i> , 1999 , 256-257, 383-389	3.9	23	
32	Towards magnetic liquid crystals. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 1999 , 357, 3063-3077	3	48	
31	Optical properties of Nd3+-doped fluorophosphate glasses. <i>Journal of Alloys and Compounds</i> , 1998 , 275-277, 455-460	5.7	40	
30	Spectroscopic properties of the trivalent terbium ion in the huntite matrix TbAl3(BO3)4. <i>Journal of Alloys and Compounds</i> , 1998 , 274, 157-163	5.7	43	
29	Spectroscopic properties of trivalent lanthanide ions in fluorophosphate glasses. <i>Journal of Non-Crystalline Solids</i> , 1998 , 238, 11-29	3.9	113	
28	Spectroscopic properties of LiErF4. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1998 , 94, 843	3-849	3	
27	Spectroscopic properties of KY3F10:Er3+. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1998 , 94, 1671-1674		14	
26	Reduction of the transition temperatures in mesomorphic lanthanide complexes by the exchange of counter-ions. <i>Journal of Materials Chemistry</i> , 1998 , 8, 1551-1553		58	

25	Are the Judd - Ofelt intensity parameters sensitive enough to reflect small compositional changes in lanthanide-doped glasses?. <i>Journal of Physics Condensed Matter</i> , 1998 , 10, L167-L170	1.8	26
24	Optical properties of -doped fluorophosphate glasses. <i>Journal of Physics Condensed Matter</i> , 1998 , 10, 7231-7241	1.8	48
23	Chapter 167 Spectral intensities of f-f transitions. Fundamental Theories of Physics, 1998, 101-264	0.8	268
22	Optical absorption spectra of in (YGG). <i>Journal of Physics Condensed Matter</i> , 1997 , 9, 1637-1648	1.8	20
21	Absorption and magnetic circular dichroism spectra of praseodymium doped fluorozirconate (ZBLAN) glass. <i>Journal of Alloys and Compounds</i> , 1997 , 250, 321-325	5.7	25
20	Crystal field analysis of EuCl3.6H2O. <i>Journal of Alloys and Compounds</i> , 1997 , 250, 326-331	5.7	16
19	Influence of dipicolinate ligands on the spectroscopic properties of europium(III) in solution. <i>Chemical Physics Letters</i> , 1997 , 266, 297-302	2.5	102
18	Spectroscopic properties of Gd3+-doped fluorozirconate glass. <i>Chemical Physics Letters</i> , 1997 , 280, 333	-3:358	65
17	Optical absorption and magnetic circular dichroism spectra of neodymium doped fluorozirconate (ZBLAN) glass. <i>Journal of Non-Crystalline Solids</i> , 1996 , 204, 178-187	3.9	22
16	Magnetic circular dichroism and optical absorption spectra of Eu3+ in Y3Al5O12(YAG). <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 2487-2493		20
15	Polarized absorption spectra of. <i>Journal of Physics Condensed Matter</i> , 1996 , 8, 1267-1279	1.8	7
14	Chapter 155 Rationalization of crystal-field parametrization. Fundamental Theories of Physics, 1996 , 121	1-283	232
13	Magnetic circular dichroism of Na3Nd(ODA)3?2NaClO4?6H2O. <i>Journal of Chemical Physics</i> , 1996 , 105, 6117-6127	3.9	16
12	Intensity parametrisation of LiYF4:Eu3+. Journal of Alloys and Compounds, 1995, 225, 71-74	5.7	7
11	Magnetic circular dichroism and optical absorption spectra of holmium-doped fluorozirconate (ZBLAN) glass: a prospective study. <i>Journal of Alloys and Compounds</i> , 1995 , 225, 80-84	5.7	11
10	On the color of the trivalent lanthanide ions. <i>Chemical Physics Letters</i> , 1995 , 235, 163-174	2.5	143
9	A simple model for crystal field splittings of the 7F1 and 5D1 energy levels of Eu3+. <i>Chemical Physics Letters</i> , 1995 , 245, 75-78	2.5	60
8	Optical absorption spectra, crystal-field energy levels and intensities of Eu3+in GdAl3(BO3)4. Journal of Physics Condensed Matter, 1994 , 6, 7797-7812	1.8	23

LIST OF PUBLICATIONS

7	Magnetic circular dichroism of Na3Eu(ODA)3?2NaClO4?6H2O. <i>Journal of Chemical Physics</i> , 1994 , 100, 815-823	3.9	18
6	Magnetic circular dichroism for generating crystal wave functions. <i>Journal of Alloys and Compounds</i> , 1994 , 207-208, 51-54	5.7	5
5	Crystal-field analysis of Eu3+in LiYF4. <i>Journal of Physics Condensed Matter</i> , 1993 , 5, 8359-8374	1.8	25
4	Closing the Loop in Ion Flotation: Recovery of Copper, Regeneration and Reuse of Collector from the Foam Phase by a Solvometallurgical Process. <i>Journal of Sustainable Metallurgy</i> ,1	2.7	2
3	Electrochemical oxidation of terbium(III) in aqueous media: influence of supporting electrolyte on oxidation potential and stability. <i>Journal of Applied Electrochemistry</i> ,1	2.6	0
2	Recovery of Copper from Ammoniacal Leachates by Ion Flotation. <i>Journal of Sustainable Metallurgy</i> ,1	2.7	7
1	Hydrolysis of uranyl-, Nd-, Ce-ions and their mixtures by thermal decomposition of urea. <i>European Journal of Inorganic Chemistry</i> ,	2.3	2