David Ropartz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9463827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nature Chemical Biology, 2018, 14, 306-310.	3.9	269
2	Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnology for Biofuels, 2015, 8, 90.	6.2	200
3	Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nature Communications, 2017, 8, 1685.	5.8	131
4	PECTIN METHYLESTERASE INHIBITOR6 Promotes <i>Arabidopsis</i> Mucilage Release by Limiting Methylesterification of Homogalacturonan in Seed Coat Epidermal Cells Â. Plant Cell, 2013, 25, 308-323.	3.1	118
5	Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends. Molecules, 2019, 24, 2706.	1.7	113
6	Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose. Scientific Reports, 2016, 6, 28276.	1.6	102
7	Cyclic Ion Mobility Mass Spectrometry Distinguishes Anomers and Open-Ring Forms of Pentasaccharides. Journal of the American Society for Mass Spectrometry, 2019, 30, 1028-1037.	1.2	92
8	New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI mass spectrometry imaging. Journal of Experimental Botany, 2014, 65, 2079-2091.	2.4	66
9	Semi-rational approach for converting a GH1 Â-glycosidase into a Â-transglycosidase. Protein Engineering, Design and Selection, 2014, 27, 13-19.	1.0	65
10	A fungal family of lytic polysaccharide monooxygenase-like copper proteins. Nature Chemical Biology, 2020, 16, 345-350.	3.9	63
11	Interlaboratory and Interplatform Study of Steroids Collision Cross Section by Traveling Wave Ion Mobility Spectrometry. Analytical Chemistry, 2020, 92, 5013-5022.	3.2	56
12	Performance evaluation on a wide set of matrixâ€assisted laser desorption ionization matrices for the detection of oligosaccharides in a highâ€throughput mass spectrometric screening of carbohydrate depolymerizing enzymes. Rapid Communications in Mass Spectrometry, 2011, 25, 2059-2070.	0.7	52
13	Innovative Enzymatic Approach to Resolve Homogalacturonans Based on their Methylesterification Pattern. Biomacromolecules, 2012, 13, 1615-1624.	2.6	49
14	Structural characterization of rhamnogalacturonan domains from Panax ginseng C. A. Meyer. Carbohydrate Polymers, 2019, 203, 119-127.	5.1	46
15	The Podospora anserina lytic polysaccharide monooxygenase PaLPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans. Biotechnology for Biofuels, 2017, 10, 63.	6.2	45
16	A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme. Applied Microbiology and Biotechnology, 2014, 98, 10105-10118.	1.7	38
17	RUBY, a Putative Galactose Oxidase, Influences Pectin Properties and Promotes Cell-To-Cell Adhesion in the Seed Coat Epidermis of Arabidopsis. Plant Cell, 2019, 31, 809-831.	3.1	38
18	Structure Determination of Large Isomeric Oligosaccharides of Natural Origin through Multipass and Multistage Cyclic Traveling-Wave Ion Mobility Mass Spectrometry. Analytical Chemistry, 2019, 91, 12030-12037.	3.2	33

DAVID ROPARTZ

#	Article	IF	CITATIONS
19	α-Galactosidase/Sucrose Kinase (AgaSK), a Novel Bifunctional Enzyme from the Human Microbiome Coupling Galactosidase and Kinase Activities. Journal of Biological Chemistry, 2011, 286, 40814-40823.	1.6	32
20	Deciphering the structure of isomeric oligosaccharides in a complex mixture by tandem mass spectrometry: Photon activation with vacuum ultra-violet brings unique information and enables definitive structure assignment. Analytica Chimica Acta, 2014, 807, 84-95.	2.6	32
21	The agar-specific hydrolase ZgAgaC from the marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily. Journal of Biological Chemistry, 2019, 294, 6923-6939.	1.6	32
22	Charge Transfer Dissociation of Complex Oligosaccharides: Comparison with Collision-Induced Dissociation and Extreme Ultraviolet Dissociative Photoionization. Journal of the American Society for Mass Spectrometry, 2016, 27, 1614-1619.	1.2	29
23	Structural Characterization and Cytotoxic Properties of a 4- <i>O</i> -Methylglucuronoxylan from <i>Castanea sativa</i> . 2. Evidence of a Structureâ^ Activity Relationship. Journal of Natural Products, 2008, 71, 1404-1409.	1.5	27
24	The Deconstruction of Pectic Rhamnogalacturonan I Unmasks the Occurrence of a Novel Arabinogalactan Oligosaccharide Epitope. Plant and Cell Physiology, 2015, 56, pcv128.	1.5	26
25	Enzymatic depolymerization of the GY785 exopolysaccharide produced by the deep-sea hydrothermal bacterium Alteromonas infernus : Structural study and enzyme activity assessment. Carbohydrate Polymers, 2018, 188, 101-107.	5.1	25
26	High-Energy Photon Activation Tandem Mass Spectrometry Provides Unprecedented Insights into the Structure of Highly Sulfated Oligosaccharides Extracted from Macroalgal Cell Walls. Analytical Chemistry, 2015, 87, 1042-1049.	3.2	24
27	Online coupling of high-resolution chromatography with extreme UV photon activation tandem mass spectrometry: Application to the structural investigation of complex glycans by dissociative photoionization. Analytica Chimica Acta, 2016, 933, 1-9.	2.6	24
28	Pectin Structure. , 2020, , 17-36.		23
29	Structural Elucidation of Enzymatically Synthesized Galacto-oligosaccharides Using Ion-Mobility Spectrometry–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2016, 64, 3609-3615.	2.4	22
30	Negative Polarity Helium Charge Transfer Dissociation Tandem Mass Spectrometry: Radical-Initiated Fragmentation of Complex Polysulfated Anions. Analytical Chemistry, 2017, 89, 3824-3828.	3.2	21
31	Distribution of cell wall hemicelluloses in the wheat grain endosperm: a 3D perspective. Planta, 2018, 248, 1505-1513.	1.6	21
32	Anomeric Retention of Carbohydrates in Multistage Cyclic Ion Mobility (IMS <i>ⁿ</i>): De Novo Structural Elucidation of Enzymatically Produced Mannosides. Analytical Chemistry, 2021, 93, 6254-6261.	3.2	21
33	Evaluation of β-galactosidase from Lactobacillus acidophilus as biocatalyst for galacto-oligosaccharides synthesis: Product structural characterization and enzyme immobilization. Journal of Bioscience and Bioengineering, 2018, 126, 697-704.	1.1	20
34	Discrimination of β-1,4- and β-1,3-Linkages in Native Oligosaccharides via Charge Transfer Dissociation Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1249-1259.	1.2	19
35	Insight in the regioselective enzymatic transgalactosylation of salicin catalyzed by β-galactosidase from Aspergillus oryzae. Process Biochemistry, 2015, 50, 782-788.	1.8	16
36	Characterization of a bacterial copperâ€dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere. FEBS Journal, 2020, 287, 3298-3314.	2.2	16

DAVID ROPARTZ

#	Article	IF	CITATIONS
37	Agar Extraction By-Products from Gelidium sesquipedale as a Source of Glycerol-Galactosides. Molecules, 2018, 23, 3364.	1.7	15
38	Changing surface grafting density has an effect on the activity of immobilized xylanase towards natural polysaccharides. Scientific Reports, 2019, 9, 5763.	1.6	13
39	Molecular Networking of High-Resolution Tandem Ion Mobility Spectra: A Structurally Relevant Way of Organizing Data in Glycomics?. Analytical Chemistry, 2021, 93, 10871-10878.	3.2	10
40	Acid-detoxified Inaba lipopolysaccharide (pmLPS) is a superior cholera conjugate vaccine immunogen than hydrazine-detoxified lipopolysaccharide and induces vibriocidal and protective antibodies. Pathogens and Disease, 2013, 67, 136-158.	0.8	9
41	Characterization of New Oligosaccharides Obtained by An Enzymatic Cleavage of the Exopolysaccharide Produced by the Deep-Sea Bacterium Alteromonas infernus Using its Cell Extract. Molecules, 2019, 24, 3441.	1.7	9
42	Characterisation of an exo-(α-1,3)-3,6-anhydro-d-galactosidase produced by the marine bacterium Zobellia galactanivorans DsijT: Insight into enzyme preference for natural carrageenan oligosaccharides and kinetic characterisation on a novel chromogenic substrate. International Journal of Biological Macromolecules, 2020, 163, 1471-1479.	3.6	9
43	Structural Characterization of Isomeric Oligogalacturonan Mixtures Using Ultrahigh-Performance Liquid Chromatography-Charge Transfer Dissociation Mass Spectrometry. Analytical Chemistry, 2021, 93, 2838-2847.	3.2	9
44	Combination of IM-Based Approaches to Unravel the Coexistence of Two Conformers on a Therapeutic Multispecific mAb. Analytical Chemistry, 2022, 94, 7981-7989.	3.2	9
45	Synthesis and immunochemical evaluation of a non-methylated disaccharide analogue of the anthrax tetrasaccharide. Organic and Biomolecular Chemistry, 2012, 10, 8524.	1.5	8
46	Synthesis of an Exhaustive Library of Naturally Occurring Gal <i>f</i> -Man <i>p</i> and Gal <i>p</i> -Man <i>p</i> Disaccharides. Toward Fingerprinting According to Ring Size by Advanced Mass Spectrometry-Based IM-MS and IRMPD. Journal of Organic Chemistry, 2021, 86, 6390-6405.	1.7	8
47	Functional exploration of Pseudoalteromonas atlantica as a source of hemicellulose-active enzymes: Evidence for a GH8 xylanase with unusual mode of action. Enzyme and Microbial Technology, 2019, 127, 6-16.	1.6	7
48	Charge transfer dissociation of a branched glycan with alkali and alkaline earth metal adducts. Journal of Mass Spectrometry, 2021, 56, e4774.	0.7	7
49	Analysis of the diversity of the glycoside hydrolase family 130 in mammal gut microbiomes reveals a novel mannoside-phosphorylase function. Microbial Genomics, 2020, 6, .	1.0	6
50	Biorefinery of apple pomace: New insights into xyloglucan building blocks. Carbohydrate Polymers, 2022, 290, 119526.	5.1	6
51	Ultra-high-performance liquid chromatography charge transfer dissociation mass spectrometry (UHPLC-CTD-MS) as a tool for analyzing the structural heterogeneity in carrageenan oligosaccharides. Analytical and Bioanalytical Chemistry, 2021, , 1.	1.9	5
52	Combination of High-Resolution Multistage Ion Mobility and Tandem MS with High Energy of Activation to Resolve the Structure of Complex Chemoenzymatically Synthesized Glycans. Analytical Chemistry, 2022, 94, 2279-2287.	3.2	4
53	Computer-aided engineering of a branching sucrase for the glucodiversification of a tetrasaccharide precursor of S. flexneri antigenic oligosaccharides. Scientific Reports, 2021, 11, 20294.	1.6	3
54	The influence of Na/H exchange on the charge transfer dissociation (CTD) spectra of mannuronic acid oligomers. International Journal of Mass Spectrometry, 2021, 468, 116634.	0.7	2

DAVID ROPARTZ

#	Article	IF	CITATIONS
55	In-depth structural characterization of oligosaccharides released by GH107 endofucanase <i>Mf</i> FcnA reveals enzyme subsite specificity and sulfated fucan substructural features. Glycobiology, 2022, 32, 276-288.	1.3	2
56	Prebiotic Isomaltooligosaccharide Provides an Advantageous Fitness to the Probiotic Bacillus subtilis CU1. Applied Sciences (Switzerland), 2022, 12, 6404.	1.3	2
57	Selected case studies presenting advanced methodologies to study food and chemical industry materials: From the structural characterization of raw materials to the multisensory integration of food. Innovative Food Science and Emerging Technologies, 2018, 46, 29-40.	2.7	1
58	Systematic comparison of eight methods for preparation of high purity sulfated fucans extracted from the brown alga Pelvetia canaliculata. International Journal of Biological Macromolecules, 2022, 201, 143-157.	3.6	1