Preeti Bhauriyal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9463818/publications.pdf

Version: 2024-02-01

26 papers 1,131 citations

471509 17 h-index 26 g-index

26 all docs

26 docs citations

26 times ranked 1406 citing authors

#	Article	IF	CITATIONS
1	High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nature Communications, 2018, 9, 4469.	12.8	213
2	Graphene-like Carbon–Nitride Monolayer: A Potential Anode Material for Na- and K-lon Batteries. Journal of Physical Chemistry C, 2018, 122, 2481-2489.	3.1	150
3	The staging mechanism of AlCl ₄ intercalation in a graphite electrode for an aluminium-ion battery. Physical Chemistry Chemical Physics, 2017, 19, 7980-7989.	2.8	144
4	Recent Advances in Graphene-like 2D Materials for Spintronics Applications. Chemistry of Materials, 2019, 31, 8260-8285.	6.7	119
5	Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium–Sulfur Battery Cathodes. Journal of the American Chemical Society, 2022, 144, 9101-9112.	13.7	71
6	A free-standing platinum monolayer as an efficient and selective catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 5303-5313.	10.3	41
7	Hexagonal BC ₃ Electrode for a High-Voltage Al-lon Battery. Journal of Physical Chemistry C, 2017, 121, 9748-9756.	3.1	37
8	Pt ₃ Ti (Ti ₁₉ @Pt ₆₀)-Based Cuboctahedral Core–Shell Nanocluster Favors a Direct over Indirect Oxygen Reduction Reaction. ACS Energy Letters, 2016, 1, 797-805.	17.4	33
9	Computational Insights into the Working Mechanism of the LiPF ₆ â€"Graphite Dual-Ion Battery. Journal of Physical Chemistry C, 2019, 123, 23863-23871.	3.1	31
10	Graphene/hBN Heterostructures as High-Capacity Cathodes with High Voltage for Next-Generation Aluminum Batteries. Journal of Physical Chemistry C, 2019, 123, 3959-3967.	3.1	30
11	Electron-rich graphite-like electrode: stability <i>vs.</i> Âvoltage for Al batteries. Journal of Materials Chemistry A, 2018, 6, 10776-10786.	10.3	27
12	Ferromagnetism in magnesium chloride monolayer with an unusually large spin-up gap. Nanoscale, 2018, 10, 22280-22292.	5.6	26
13	Identifying suitable ionic liquid electrolytes for Al dual-ion batteries: role of electrochemical window, conductivity and voltage. Materials Advances, 2020, 1, 1354-1363.	5.4	23
14	A Computational Study of a Singleâ€Walled Carbonâ€Nanotubeâ€Based Ultrafast Highâ€Capacity Aluminum Battery. Chemistry - an Asian Journal, 2017, 12, 1944-1951.	3.3	20
15	Role of Dimensionality for Photocatalytic Water Splitting: CdS Nanotube versus Bulk Structure. ChemPhysChem, 2019, 20, 383-391.	2.1	20
16	Polycyclic Aromatic Hydrocarbons as Prospective Cathodes for Aluminum Organic Batteries. Journal of Physical Chemistry C, 2021, 125, 49-57.	3.1	20
17	Catalytic upgrading of ethanol to ⟨i>n⟨ i>-butanol using an aliphatic Mn–PNP complex: theoretical insights into reaction mechanisms and product selectivity. Catalysis Science and Technology, 2019, 9, 2794-2805.	4.1	19
18	Superior anchoring effect of a Cu-benzenehexathial MOF as an aluminium–sulfur battery cathode host. Materials Advances, 2020, 1, 3572-3581.	5.4	19

#	Article	IF	CITATIONS
19	Theoretical Insights into the Charge and Discharge Processes in Aluminum–Sulfur Batteries. Journal of Physical Chemistry C, 2020, 124, 11317-11324.	3.1	19
20	Density Functional Theory Study of Defect Induced Ferromagnetism and Half-Metallicity in Cal ₂ Based Monolayer for Spintronics Applications. ACS Applied Nano Materials, 2019, 2, 6152-6161.	5.0	15
21	Metal-ligand bifunctional based Mn-catalysts for CO2 hydrogenation reaction. Molecular Catalysis, 2019, 468, 109-116.	2.0	15
22	Theoretical Insights into Solid Electrolyte Interphase Formation in an Al Anode Dual-Ion Battery. Journal of Physical Chemistry C, 2020, 124, 7634-7643.	3.1	13
23	Enhanced Lewis acid-base adducts in doped stanene: Sensing and photocatalysis. Applied Surface Science, 2019, 478, 946-958.	6.1	10
24	Firstâ€Principles Study of Magnesium Peroxide Nucleation for Mgâ€Air Battery. Chemistry - an Asian Journal, 2018, 13, 3198-3203.	3.3	7
25	Identification of Nonâ€Carbonaceous Cathodes in Al Batteries: Potential Applicability of Black and Blue Phosphorene Monolayers. Chemistry - an Asian Journal, 2019, 14, 2831-2837.	3.3	6
26	Catalysing the performance of Li–sulfur batteries with two-dimensional conductive metal organic frameworks. Journal of Materials Chemistry A, 2022, 10, 12400-12408.	10.3	3