Jennifer M Bomberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9463789/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	SprayNPray: user-friendly taxonomic profiling of genome and metagenome contigs. BMC Genomics, 2022, 23, 202.	2.8	4
2	Genomic characterization of lytic bacteriophages targeting genetically diverse Pseudomonas aeruginosa clinical isolates. IScience, 2022, 25, 104372.	4.1	16
3	A genome-wide association study of severe asthma exacerbations in Latino children and adolescents. European Respiratory Journal, 2021, 57, 2002693.	6.7	15
4	Elastase Activity From Pseudomonas aeruginosa Respiratory Isolates and ICU Mortality. Chest, 2021, 160, 1624-1633.	0.8	15
5	Commensals and immune cells speak in the language of endogenous retroviruses. Cell, 2021, 184, 3593-3594.	28.9	1
6	Model Systems to Study the Chronic, Polymicrobial Infections in Cystic Fibrosis: Current Approaches and Exploring Future Directions. MBio, 2021, 12, e0176321.	4.1	26
7	Extracellular vesicles promote transkingdom nutrient transfer during viral-bacterial co-infection. Cell Reports, 2021, 34, 108672.	6.4	25
8	Adaptation and genomic erosion in fragmented Pseudomonas aeruginosa populations in the sinuses of people with cystic fibrosis. Cell Reports, 2021, 37, 109829.	6.4	19
9	Interplay between host-microbe and microbe-microbe interactions in cystic fibrosis. Journal of Cystic Fibrosis, 2020, 19, S47-S53.	0.7	24
10	Quantitative Framework for Model Evaluation in Microbiology Research Using <i>Pseudomonas aeruginosa</i> and Cystic Fibrosis Infection as a Test Case. MBio, 2020, 11, .	4.1	86
11	Bacterial Community Interactions During Chronic Respiratory Disease. Frontiers in Cellular and Infection Microbiology, 2020, 10, 213.	3.9	70
12	Dispersal of Epithelium-Associated Pseudomonas aeruginosa Biofilms. MSphere, 2020, 5, .	2.9	16
13	IL-22-binding protein exacerbates influenza, bacterial super-infection. Mucosal Immunology, 2019, 12, 1231-1243.	6.0	33
14	NADH Dehydrogenases in Pseudomonas aeruginosa Growth and Virulence. Frontiers in Microbiology, 2019, 10, 75.	3.5	20
15	Clinical predictors of cystic fibrosis chronic rhinosinusitis severity. International Forum of Allergy and Rhinology, 2019, 9, 759-765.	2.8	29
16	An epoxide hydrolase secreted by <i>Pseudomonas aeruginosa</i> decreases mucociliary transport and hinders bacterial clearance from the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L150-L156.	2.9	27
17	Viral-Bacterial Co-infections in the Cystic Fibrosis Respiratory Tract. Frontiers in Immunology, 2018, 9, 3067.	4.8	90
18	<i>Staphylococcus aureus</i> Biofilm Growth on Cystic Fibrosis Airway Epithelial Cells Is Enhanced during Respiratory Syncytial Virus Coinfection. MSphere, 2018, 3, .	2.9	40

#	Article	IF	CITATIONS
19	Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. Journal of Clinical Investigation, 2018, 128, 4639-4653.	8.2	159
20	Volatile fingerprinting of <i>Pseudomonas aeruginosa</i> and respiratory syncytial virus infection in an <i>in vitro</i> cystic fibrosis co-infection model. Journal of Breath Research, 2018, 12, 046001.	3.0	15
21	Thrombospondin-1 protects against pathogen-induced lung injury by limiting extracellular matrix proteolysis. JCI Insight, 2018, 3, .	5.0	36
22	<i>Pseudomonas aeruginosa</i> sabotages the generation of host proresolving lipid mediators. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 136-141.	7.1	73
23	Pseudomonas aeruginosa Contact-Dependent Growth Inhibition Plays Dual Role in Host-Pathogen Interactions. MSphere, 2017, 2, .	2.9	36
24	Sodium Nitrite Inhibits Killing of Pseudomonas aeruginosa Biofilms by Ciprofloxacin. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	14
25	Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin. MBio, 2016, 7, .	4.1	12
26	Engineered cationic antimicrobial peptide (eCAP) prevents <i>Pseudomonas aeruginosa</i> biofilm growth on airway epithelial cells. Journal of Antimicrobial Chemotherapy, 2016, 71, 2200-2207.	3.0	50
27	Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection. MSphere, 2016, 1, .	2.9	27
28	Clinical potential of engineered cationic antimicrobial peptides against drug resistant biofilms. Expert Review of Anti-Infective Therapy, 2016, 14, 989-991.	4.4	13
29	Digging through the Obstruction: Insight into the Epithelial Cell Response to Respiratory Virus Infection in Patients with Cystic Fibrosis. Journal of Virology, 2016, 90, 4258-4261.	3.4	15
30	Biochemical and Cellular Characterization and Inhibitor Discovery of <i>Pseudomonas aeruginosa</i> 15-Lipoxygenase. Biochemistry, 2016, 55, 3329-3340.	2.5	39
31	Microbiology: Social Suicide for a Good Cause. Current Biology, 2016, 26, R80-R82.	3.9	6
32	Respiratory syncytial virus infection enhances <i>Pseudomonas aeruginosa</i> biofilm growth through dysregulation of nutritional immunity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1642-1647.	7.1	144
33	Compromised Defenses: Exploitation of Epithelial Responses During Viral-Bacterial Co-Infection of the Respiratory Tract. PLoS Pathogens, 2016, 12, e1005797.	4.7	33
34	Sodium Nitrite Blocks the Activity of Aminoglycosides against Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2015, 59, 3329-3334.	3.2	16
35	Efflux as a Glutaraldehyde Resistance Mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2015, 59, 3433-3440.	3.2	64
36	Serum and Glucocorticoid-Inducible Kinase1 Increases Plasma Membrane wt-CFTR in Human Airway Epithelial Cells by Inhibiting Its Endocytic Retrieval. PLoS ONE, 2014, 9, e89599.	2.5	16

#	ARTICLE	IF	CITATIONS
37	BPIFB3 Regulates Autophagy and Coxsackievirus B Replication through a Noncanonical Pathway Independent of the Core Initiation Machinery. MBio, 2014, 5, e02147.	4.1	32
38	Pseudomonas aeruginosa Cif Protein Enhances the Ubiquitination and Proteasomal Degradation of the Transporter Associated with Antigen Processing (TAP) and Reduces Major Histocompatibility Complex (MHC) Class I Antigen Presentation. Journal of Biological Chemistry, 2014, 289, 152-162.	3.4	50
39	Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells. Free Radical Biology and Medicine, 2014, 77, 307-316.	2.9	50
40	Respiratory virus coâ€infection enhances Pseudomonas aeruginosa biofilm growth on airway epithelial cells (869.1). FASEB Journal, 2014, 28, 869.1.	0.5	0
41	Shank2E mediates dexamethasoneâ€induced increase in membrane CFTR in human airway cells. FASEB Journal, 2013, 27, 913.8.	0.5	0
42	SGK1 Increases Plasma Membrane CFTR in Human Airway Epithelial Cells by Inhibiting Its Endocytic Retrieval. FASEB Journal, 2013, 27, 913.9.	0.5	0
43	Exploring the substrate profile of CFTR Inhibitory Factor. FASEB Journal, 2013, 27, 559.7.	0.5	0
44	Arsenic Promotes Ubiquitinylation and Lysosomal Degradation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Chloride Channels in Human Airway Epithelial Cells. Journal of Biological Chemistry, 2012, 287, 17130-17139.	3.4	42
45	A Pseudomonas aeruginosa Toxin that Hijacks the Host Ubiquitin Proteolytic System. PLoS Pathogens, 2011, 7, e1001325.	4.7	96
46	Methods to Monitor Cell Surface Expression and Endocytic Trafficking of CFTR in Polarized Epithelial Cells. Methods in Molecular Biology, 2011, 741, 271-283.	0.9	11
47	The deubiquitinating enzyme USP10 regulates the endocytic recycling of CFTR in airway epithelial cells. Channels, 2010, 4, 150-154.	2.8	37
48	SGK1 Increases Plasma Membrane CFTR in Human Airway Epithelial Cells. FASEB Journal, 2010, 24, 610.15.	0.5	0
49	Long-Distance Delivery of Bacterial Virulence Factors by Pseudomonas aeruginosa Outer Membrane Vesicles. PLoS Pathogens, 2009, 5, e1000382.	4.7	486
50	The Deubiquitinating Enzyme USP10 Regulates the Post-endocytic Sorting of Cystic Fibrosis Transmembrane Conductance Regulator in Airway Epithelial Cells. Journal of Biological Chemistry, 2009, 284, 18778-18789.	3.4	99
51	USP10 regulates postâ€endocytic recycling of CFTR in airway epithelial cells. FASEB Journal, 2009, 23, 998.35.	0.5	0
52	The ΔF508-CFTR mutation results in increased biofilm formation by <i>Pseudomonas aeruginosa</i> by increasing iron availability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L25-L37.	2.9	157
53	The Pseudomonas aeruginosa Secreted Protein PA2934 Decreases Apical Membrane Expression of the Cystic Fibrosis Transmembrane Conductance Regulator. Infection and Immunity, 2007, 75, 3902-3912.	2.2	107